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1. Introduction

• In section 2 we discuss the solution of the proposed
SSCR algorithm in detail. We also show that the pa-
rameters in the algorithm can be chosen adaptively.
The time and memory complexity of each sub-problem
is analyzed and comparisons with existing reconstruc-
tion algorithms are provided.

• In section 3 we show additional reconstruction results
of the statue without using regularizations. See also
Fig. 2 and Fig. 3 in the main article.

• In section 4 we show additional reconstruction results
of the pyramid. See also Fig. 4 in the main article.

• In section 5 we show additional reconstruction results
of the statue. See also Fig. 5 and Fig. 6 in the main
article.

2. The SSCR algorithm

The optimization problem of the proposed signal-surface
collaborative regularization (SSCR) method writes

arg min
τ,u,g,

Ds,Dn,C,S

∑
p,q

[(dp,q −N) ln(1− τp,q)− dp,q ln(τp,q)]

+ λt‖P(τ )−DS‖22 + λut‖P(Au)−DS‖22 + λpt|S|0
+ λ‖τ −Au‖22 + su‖u‖1 + λg

[
‖u− g‖22 + Υ(g)

]
+ λu

∑
i

[
‖Bui −DsCiD

T
n ‖22 + λpu|Ci|0

]
s.t. g ∈ G, DsD

T
s = Ix, DnD

T
n = Iy,

(S1)
in which p and q are the indices of the measurement pair
and the time bin, respectively. N is the number of pulses
used for each measurement pair. dp,q is the number of the
photon events recorded. The optimization problem contains
several parameters, namely, λt, λut, λpt, λ, su, λg , λu and
λpu. We discuss the solutions to the sub-problems of the

Algorithm S1 Solving the sub-problem (S4)

Require: τ 0, simp
u , µs.

Ensure: u0.
b0
0 = 0

u0
0 = arg minu ‖Au− τ 0‖22

for j = 0 to J − 1 do
v0
j+1 = arg minv s

imp
u ‖v‖1 + µs

∥∥v − u0
j + b0

j

∥∥2
2

u0
j+1 = argminu

∥∥Au− τ 0
∥∥2

2
+ µs

∥∥v0
j+1 − u+ b0

j

∥∥2

2

b0
j+1 = b0

j + v0
j+1 − u0

j+1

end for
u0 = v0

J

proposed SSCR algorithm (See Algorithm 1 in the main ar-
ticle) step by step. We assume that the reconstruction do-
main is discretized with L × L × L voxels and p = O(1),
q = O(L) for few-shot NLOS imaging scenarios.

2.1. The initialization stage

(A1) Initializing τ The estimated signal τ is initialized
by minimizing the data-fidelity term without regularization

τ0p,q = arg min
τp,q

(dp,q−N) ln(1−τp,q)−dp,q ln(τp,q), (S2)

which yields a closed form solution τ0p,q = dp,q/N . The
time and memory complexity of this step is O(L).

(A2) Initializing u We initialize u by solving the follow-
ing L1 regularized problem

u0 = arg min
u

λ‖τ 0 −Au‖22 + su‖u‖1, (S3)

in which λ and su are fixed parameters to be determined.
By defining simp

u = su/λ, this problem is equivalent to the
following optimization problem

u0 = arg min
u

‖τ 0 −Au‖22 + simp
u ‖u‖1. (S4)

We determine the parameter simp
u adaptively as follows.

Let uBP = AT τ 0 be the solution of the back-projection
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Method Confocal Non-confocal Reconstruction quality Time Complexity Memory Complexity

LOG-BP [3] ! ! Frobbly O(L3) O(L3)

F-K [4] ! 7 Frobbly O(L3 logL) O(L3)

PF [5] ! ! Low O(L3 logL) O(L3)

LCT [8] ! 7 Low O(L3 logL) O(L3)

D-LCT [9] ! 7 Low O(L3 logL) O(L3)

SOCR [6] ! ! Medium O(L3) O(L3)

SSCR ! ! High O(L3) O(L3)

Table 1. Comparisons of different NLOS imaging methods with O(1) measurement pairs. The proposed SSCR method provides high-
quality reconstructions and enjoys low complexity.

(BP) algorithm. We use the conjugate gradient method to
solve the least-squares problem minu ‖τ 0−Au‖22 with ini-
tial guess uBP. The maximum number of iterations is set to
be 20, and the iteration breaks whenever the relative resid-
ual of the linear system ATAu = AT τ 0 reaches below
0.5%. The output is denoted by uLS. The parameter simp

u

is determined as

simp
u = ksparse

‖τ 0 −AuLS‖22
‖uLS‖1

, (S5)

where ksparse = 10 by default. This problem can be solved
efficiently using the split Bregman method [2]. The main
steps are shown in Algorithm S1.

To carry out the iteration process, a new parameter µs is
introduced. Empirically, we set this parameter as

µs =
‖u‖0
2‖u‖1

simp
u . (S6)

In each iteration, the variable v can be updated using the
soft-thresholding operator [2]. To update the variable u, the
conjugate gradient method is applied, which takes O(L3)
memory and computational cost.

2.2. The iteration stage

(B1) Updating g The variable g is updated as follows

gk+1 = arg min
g

‖uk − g‖22 + Υ(g) = S(uk). (S7)

To realize the surfaciation operator S , it suffices to solve
the optimization problems (15), (17), and (19) in the main
article, as listed below

• Equation (15) in the main article

e∗ =(e∗ij)I×J

= arg min
{eij}

I∑
i=1

J∑
j=1

γij(eij − ẽij)2

+

I∑
p=1

J∑
q=1

I∑
r=1

J∑
s=1

we
pq,rs(epq − ers)2.

(S8)

• Equation (17) in the main article

d∗ =(d∗ij)I×J

= arg min
{dij}

I∑
i=1

J∑
j=1

nij∑
n=1

λijn(dij − zknij )2

+

I∑
p=1

J∑
q=1

I∑
r=1

J∑
s=1

wd
pq,rs(dpq − drs)2.

(S9)

• Optimization problem (19) in the main article

min
{αij}

I∑
i=1

J∑
j=1

nij∑
n=1

λijn(αij − uijknij )2

+

I∑
p=1

J∑
q=1

I∑
r=1

J∑
s=1

wα
pq,rs(αpq − αrs)2.

(S10)

Noting that

nij∑
n=1

λijn(dij − zknij )2 = λij

(
dij −

nij∑
n=1

rijnzknij

)2

,

(S11)
and

nij∑
n=1

λijn(αij − uijknij )2 = λij

(
αij −

nij∑
n=1

rijnuknij

)2

,

(S12)
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in which uknij = uijknij , λij =
∑nij

n=1 λijn and rijn =

λijn/λij , it suffices to solve the problem of the following
type

F (u;λ,w) =
∑
i

λi(ui−di)2+
∑
ij

wij(ui−uj)2, (S13)

in which u is the optimization variable, λ and w are fixed
weights. The solution to this least-squares problem can be
obtained by solving the linear system

λiui +
∑
k 6=i

(wik + wki)ui −
∑
k 6=i

(wik + wki)uk = λidi,

(S14)
for all i. We use the widely acknowledged LSQR method to
solve this problem. For the parameters we

pq,rs, w
d
pq,rs and

wα
pq,rs, we set we

pq,rs = wd
pq,rs = wα

pq,rs = wpq,rs and
define

wpq,rs =

{
1, max{|p− r|, |q − s|} = 1
0, otherwise (S15)

In the main article, we have provided basic introductions
for the determinations of e∗, d∗, and α. For high noise-
robustness, the parameters γij , λijn and data ẽij are related
with the input u. We show all steps in detail, which matches
the supplementary code.

• Step 1: Determining d∗ with u. Set λij = 2, rijn =
2u2ijn/

∑nij

n=1 u
2
i,j,knij

. For simplicity, in Eq. (S9) we
replace zknij in the data fidelity term with kij for the
implementation of the code. We obtain the solution of
(S9) with Eq. (S11).

• Step 2: Determining α with u and d∗. Set λij = 1
and rijn = r′ijn/

∑nij

n=1 r
′
ijn with

r′ijn =

{
(d∗ij − kijn)−2, d∗ij 6= kijn
2, otherwise

, (S16)

in which d∗ij is obtained in Step 1. We obtain the solu-
tion of (S10) with Eq. (S12).

• Step 3: Determining e∗ with Eq. (S8). Let α∗max be
the maximum value of α∗. The parameter γij is set as
γij = α∗ij/(2α

∗
max). Besides, we reset γij to be 0.75

if (i, j) is a background pixel of u or

nij∑
n=1

rijnuknij < 0.1uinter
max, (S17)

in which rijn is defined in Step 2 and uinter
max =

maxi,j{
∑nij

n=1 rijnuknij}. In the main article, we
choose the data ẽij to be the indicator function of
the foreground pixels for simplicity. For high noise-
robustness, we set ẽij = (

∑nij

n=1 rijnuknij )/uinter
max for

foreground pixels (i, j) of u and 0 for background pix-
els (i, j) of u. The solution of Eq. (S8) is used to deter-
mine the foreground set of g by comparing the values
with 0.5, as discussed in Eq. (15) of the main article.

Noting that we use sparse weights in the least-squares
problems, the time and memory complexity of this step is
O(L3).

(B2) Updating the triplet (Ds,C, Dn) The orthogonal
matrices Ds and Dn capture the local structures and non-
local correlations of the reconstruction u, respectively. The
tensor C consists of the sparse transform coefficients of the
block dataset of the albedo values. The triplet (Ds,C, Dn)
is updated by solving the following optimization problem

(Dk+1
s ,Ck+1, Dk+1

n ) = arg min
Ds,C,Dn

‖Buki −DsCiD
T
n ‖22

+λpu|Ci|0,
(S18)

whose solution has been studied in the work [1, 6]. The pa-
rameter λpu is chosen adaptively and implicitly by directly
following the supplement of [6]. When the sizes of the lo-
cal patches and searching window are O(1), the resulting
time and memory complexity is O(L3). More details can
be found in [6].

(B3) Updating S The matrix S contains the sparse
frequency-domain coefficients of a combination of the es-
timated and the simulated signal. We update S by solving

Sk+1 = arg min
S

λt‖P(τ
k
)−DS‖22

+λut‖P(Auk)−DS‖22 + λpt|S|0.
(S19)

By setting λimp
ut = λut/λt and λimp

pt = λpt/λt, this prob-
lem is equivalent to the following optimization problem.

Sk+1 = arg min
S

‖P(τ
k
)−DS‖22

+λimp
ut ‖P(Auk)−DS‖22 + λimp

pt |S|0.
(S20)

We set λimp
ut = 1. Interested readers are referred to equa-

tion (S.7) in the supplement of [7] for the solution to this
problem and the implicit choices of λimp

pt . When the patch
sizes of the signal areO(1), the time and memory complex-
ity of this step is O(L).

(B4) Updating τ The estimated signal τ is updated with

τ k+1 = arg min
τ∑

p,q

[(dp,q −N) ln(1− τp,q)− dp,q ln(τp,q)]

+λt‖P(τ )−DSk+1‖22 + λ‖τ −Auk‖22,
(S21)
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in which P is the patch generating operator. Let P∗ be the
patch aggregation operator that maps the patch dataset back
to the signal, such that P∗ ◦ P is the identity transform. We
assume that

λt‖P(τ )−DSk+1‖22 = λ̄t‖τ − P∗(DSk+1)‖22. (S22)

This equation holds precisely using the boundary extension
and zero padding techniques. It suffices to determine the
parameter λ̄t. In the following, we abuse the notation and
write λ̄t as λt for simplicity. With this treatment, the objec-
tive function of Eq. (S21) can be rewritten as∑

p,q

[(dp,q −N) ln(1− τp,q)− dp,q ln(τp,q)]

+(λt + λ)

∥∥∥∥τ − λtP∗(DSk+1) + λAuk

λt + λ

∥∥∥∥2
2

.

(S23)

In this problem, we set the parameters λt and λ implicitly
as

λt = λ =

∑
p,q[(dp,q −N) ln(1− τ0p,q)− dp,q ln(τ0p,q)]∥∥τ 0 − 1

2 (P∗(DS1) +Au0)
∥∥2
2

(S24)
Noting that the variables {τp,q} are decoupled, it suffices to
solve the problem of the following type

min
τ

f(τ) = (d−N) ln(1−τ)−d ln(τ)+µ(τ−s)2, (S25)

in which N is a positive integer, d ∈ [0, N ] is a positive
integer. µ > 0 and s are fixed parameters. We find τ in the
interval [0, 1]. This is a convex optimization problem, and
the situation breaks down into three cases depending on the
value of d.

• Case 1: d = 0. The term −d ln(τ) vanishes and a
change of variable s∗ = 1 − s converts this situation
to Case 3. The solution is given by

τopt = max

{
0, 1− 1

2

(
1− s+

√
(1− s)2 +

2N

µ

)}
.

(S26)

• Case 2: 0 < d < N . The objective function is strictly
convex in the interval (0, 1) with f(0+) = f(1−) =
+∞. Differentiating with respect to τ , we deduce that
the solution is the unique real zero point of the cubic
polynomial

p(x) = x3 − (s+ 1)x2 + (s− N

2µ
)x+

d

2µ
(S27)

in the interval (0, 1).

• Case 3: d = N . This never happens in real-world
experiments. In this case, the term (d − N) ln(1 −
τ) − d ln(τ) vanishes and the closed-form solution is
given by

τopt = min

{
1,

1

2

(
s+

√
s2 +

2N

µ

)}
. (S28)

For the cases 1 and 3, it takes O(1) to compute τopt. For
the case 2, it suffices to compute and filter the eigenval-
ues of the companion matrix of the cubic polynomial (S27),
which also takes O(1). Thus, the overall time and memory
complexity of this step is O(L3). Other tricks to determine
the foreground indication matrix e are provided in the sup-
plementary code.

(B5) Updating u The reconstructed target is updated with

uk+1 = arg min
u

λ‖τ k+1 −Au‖22 + λsu‖u‖1

+λut‖P(Au)−DSk+1‖22
+λu

∑
i

‖Bui −Dk+1
s Ck+1

i (Dk+1
n )T ‖22

+λg‖u− gk+1‖22.

(S29)

We refer to equation (S.9) and Algorithm 4 in the sup-
plement of [6] for the solution to this problem and corre-
sponding choices of the parameters λut, λu. The method
of choosing λg implicitly is completely analogous to that of
λut. Similar to step (A2), the time and memory complexity
of this step is O(L3).

The overall time and memory complexity of the pro-
posed method is O(L3) when P = O(1). Comparisons
of the proposed SSCR algorithm with existing methods are
shown in Table 1.

3. Reconstructions without regularizations
In Fig. 2 and Fig. 3 of the main article, we present the

least-squares solution and the corresponding simulated sig-
nal for the instance of the statue with 3 × 3 confocal mea-
surements. The coordinates of the focal points are provided
in the supplementary code. The original measured signal is
provided in the work [4]. The exposure time is 60 min for
the original 512 × 512 measurements. The time resolution
is 32 ps. The voxel size is 3.17 × 3.17 × 0.96 cm3 in the
horizontal, vertical and depth directions. The target is 1 m
away from the visible surface. The size of the reconstruc-
tion domain is 2× 2× 0.4 m3 in the horizontal, vertical and
depth directions. The least-squares problem without regu-
larization writes

arg min
u

‖Au− τ‖22, (S30)
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Figure S1. The relative L2 error of the normal equation in log
scale. After 1000 iterations, the relative error decreases to 0.12%.

Figure S2. The relative L2 data misfit of each iteration. The rela-
tive data misfit decreases to 23.26% after 1000 iterations.

in which A is the measurement matrix and τ is the mea-
sured data. The solution is not unique due to the rank defi-
ciency of A. We use the conjugate gradient method to solve
the corresponding normal equation

ATAu = AT τ . (S31)

The initial value of u is set as AT τ , which is the solu-
tion of the back-projection algorithm. The L2 relative er-
rors of the normal equation and the data misfit in log scales
ln(‖ATAu−AT τ‖2/‖AT τ‖2) and ln(‖Au− τ‖2/‖τ‖2)
of the first 1000 iterations are shown in Fig. S1 and Fig. S2.
The algorithm converges and the relative L2 data misfit of
the least-squares solution is 23.36%, which results from the
approximation error of the physical model and measure-
ment noise. The reconstruction results of the BP algorithm

Figure S3. Reconstruction results of the statue with the back-
projection algorithm and CG iterations. The target cannot be iden-
tified in these solutions, which indicates the necessity of introduc-
ing regularizations.

and CG iterations are shown in Fig. S3. The target cannot
be identified from these reconstructions, which indicates the
indispensable role of regularizations in this few-shot NLOS
imaging scenario.

4. Reconstruction results of the pyramid
The three views of the reconstruction results of the pyra-

mid are shown in Fig. S4. There are misleading artifacts
in the top view and side view of the SOCR reconstruc-
tion, while the SSCR reconstruction does not contain back-
ground noise. For the F-K, LCT and D-LCT methods, we
use the linear interpolation technique to pre-process the sig-
nal. We also use the zero-padding, nearest-neighbor, and
makima(the modified Akima piecewise cubic Hermite in-

5



Figure S4. The three views of the pyramid reconstructed with 3×3
confocal synthetic signal.

terpolation, provided by the Matlab software) interpola-
tion techniques to pre-process the signal. The F-K, LCT
and D-LCT reconstructions with these signals are shown in
Fig. S5, Fig. S6, and Fig. S7, respectively. The shape of the
target cannot be correctly reconstructed with these methods.

5. Reconstruction results of the statue
In real-world applications, the measured signal is heav-

ily corrupted with noise. As shown in Fig. S8, the LOG-BP
reconstructions of the statue are noisy in few-shot NLOS
imaging scenarios and the target cannot be identified. Re-
constructions of the F-K, LCT and D-LCT methods with
different number of illumination points and signal pre-
processing techniques are shown in Fig. S9 to Fig. S23. See
also Fig. 6 in the main article for a comparison with the
proposed method.

Figure S5. The F-K reconstructions of the pyramid with signal
pre-processed by different interpolation techniques.

Figure S6. The LCT reconstructions of the pyramid with signal
pre-processed by different interpolation techniques.
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Figure S7. The D-LCT reconstructions of the pyramid with signal
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Figure S9. The F-K reconstructions of the statue using 3× 3 con-
focal signal and different signal interpolation techniques.

Figure S10. The F-K reconstructions of the statue using 4 × 4
confocal signal and different signal interpolation techniques.

Figure S11. The F-K reconstructions of the statue using 5 × 5
confocal signal and different signal interpolation techniques..

Figure S12. The F-K reconstructions of the statue using 6 × 6
confocal signal and different signal interpolation techniques.
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Figure S13. The F-K reconstructions of the statue using 7 × 7
confocal signal and different signal interpolation techniques.

Figure S14. The LCT reconstructions of the statue using 3 × 3
confocal signal and different signal interpolation techniques.

Figure S15. The LCT reconstructions of the statue using 4 × 4
confocal signal and different signal interpolation techniques.

Figure S16. The LCT reconstructions of the statue using 5 × 5
confocal signal and different signal interpolation techniques.
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Figure S17. The LCT reconstructions of the statue using 6 × 6
confocal signal and different signal interpolation techniques.

Figure S18. The LCT reconstructions of the statue using 7 × 7
confocal signal and different signal interpolation techniques.

Figure S19. The D-LCT reconstructions of the statue using 3× 3
confocal signal and different signal interpolation techniques.

Figure S20. The D-LCT reconstructions of the statue using 4× 4
confocal signal and different signal interpolation techniques.
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Figure S21. The D-LCT reconstructions of the statue using 5× 5
confocal signal and different signal interpolation techniques.

Figure S22. The D-LCT reconstructions of the statue using 6× 6
confocal signal and different signal interpolation techniques.

Figure S23. The D-LCT reconstructions of the statue using 7× 7
confocal signal and different signal interpolation techniques.
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