
FlowGrad: Controlling the Output of Generative ODEs with Gradients

Xingchao Liu1, Lemeng Wu1, Shujian Zhang1, Chengyue Gong1, Wei Ping2, Qiang Liu1

1University of Texas at Austin 2NVIDIA
{xcliu,lmwu,szhang19,cygong}@utexas.edu,wping@nvidia.com,lqiang@cs.utexas.edu

Abstract

Generative modeling with ordinary differential equa-
tions (ODEs) has achieved fantastic results on a variety of
applications. Yet, few works have focused on controlling
the generated content of a pre-trained ODE-based genera-
tive model. In this paper, we propose to optimize the out-
put of ODE models according to a guidance function to
achieve controllable generation. We point out that, the gra-
dients can be efficiently back-propagated from the output
to any intermediate time steps on the ODE trajectory, by
decomposing the back-propagation and computing vector-
Jacobian products. To further accelerate the computation
of the back-propagation, we propose to use a non-uniform
discretization to approximate the ODE trajectory, where
we measure how straight the trajectory is and gather the
straight parts into one discretization step. This allows us
to save ∼ 90% of the back-propagation time with ignor-
able error. Our framework, named FlowGrad, outperforms
the state-of-the-art baselines on text-guided image manip-
ulation. Moreover, FlowGrad enables us to find global se-
mantic directions in frozen ODE-based generative models
that can be used to manipulate new images without extra
optimization.

1. Introduction
Controllable generation is very important for image edit-

ing [2, 11, 43], text-guided image manipulation [19, 30, 33],
etc.. Traditionally, we use GAN and optimize the latent em-
bedding with the desirable objective functions [2, 7, 11, 29,
31, 38, 49]. But the disadvantage is that, it is difficult to
embed the image into the GAN space honestly and the per-
formance is limited by the pre-trained GANs, which suffer
from training instability and mode collapse.

Recently, diffusion models (or stochastic differential
equation (SDE)-based generative models) has been popu-
lar [9, 12, 30, 39, 40, 42, 45], and there has been a number of
works on controlled generation based on diffusion models,
such as [9, 28]. But due to the diffusion noise, it is hard to
accurately control the output, especially when it comes to

optimizing a complex loss function such as CLIP [35]. To
achieve controlled generation, existing methods either re-
quires training a noised version of the guidance [9, 30, 40],
or fine-tuning the whole diffusion model [13, 19].

In contrast, ordinary differential equation (ODE)-based
generative models represent a simpler alternative than dif-
fusion without involving the diffusion noise and the Ito
calculus machinery. Recently, it has been shown that 1)
ODEs can be trained directly without resorting to SDEs,
and 2) ODE can perform comparable or even better than
SDE [16, 21, 36, 44].

Due to the deterministic nature of ODEs, they form an
ideal model for controlled generation, as they enjoy both
the rich latent space as SDEs and the explicit optimization
framework as GANs. The goal of this work is to fully ex-
plore its potential in terms of controlled generation, with un-
conditioned pre-trained ODEs. Technically, 1) We present a
simple way to control the output of ODE-based deep gener-
ative models with gradients; 2) We present a novel strategy
to speedup the gradient computation by explore the straight-
ness of ODE trajectories. By measuring the straightness at
each time step during the simulation with Euler discretiza-
tion, we can approximate the ODE trajectory with a few-
step non-uniform discretization, and consequently reduce a
great amount of time in back-propagation.

Our fast gradient computation scheme, named Flow-
Grad, allows us to efficiently control the generated con-
tents of ODEs with any differentiable loss functions. In
particular, we test FlowGrad on a challenging objective
function, the CLIP loss, to manipulate user-provided im-
ages with text prompts. Moreover, by optimizing a set of
training images together, FlowGrad can find semantically
meaningful global directions in pre-trained ODE models,
which allow manipulating new images for free. Equipped
with advanced ODE-based generative models, FlowGrad
outperforms state-of-the-art CLIP-guided diffusion models
and GANs.

2. Background
In this section, we introduce background knowledge of

ODE-based generative models.

(c) Classifier Guidance

PF ODE
Model𝑥! 𝑣(𝑥!, 0)

Noised
Guidance

+ 𝑥"
#

(a) GAN Inversion (b) DiffusionCLIP

… PF ODE
Model 𝑣(𝑥$

#
,
𝑘
𝑁)

Noised
Guidance

+ 𝑥$%"
#

… 𝑥"

GAN𝑧 𝑥 Guidance

∇&ℒ(𝑥)Gradient

(d) FlowGrad (Ours)

Frozen

Frozen Frozen

Shortened
PF ODE

𝑥!'()*+ 𝑥"'()*+ Guidance

Gradient

Fine-tune

Complete
PF ODE

𝑥! 𝑥"

Fine-tuned
Inference

PF ODE
Model𝑥! 𝑣(𝑥!, 0)

PF ODE
Model𝑥$

#
𝑣(𝑥$

#
,
𝑘
𝑁)

𝑥$%"
#

… 𝑥"

Frozen Frozen

+

𝒖𝟎

𝑥"
#

…

𝒖$
#

Guidance

Gradient

∇&!ℒ(𝑥")

∇&"ℒ(𝑥!) ∇&#
$
ℒ(𝑥$

#
)

𝑥$
#

∇&!ℒ(𝑥")

+

Figure 1. We compare different frameworks for controlled generation with generative models and a guidance objective L. (a) GAN can be
directly used as a prior by optimizing its latent z. However, a good z for initialization can be hard to get [1, 2, 22]. (b) DiffusionCLIP [19]
fine-tunes a pre-trained ODE model to minimize the guidance loss. To allow back-propagation during fine-tuning, it adopts a shortened
ODE with large discretization error. When applied on a new image, its performance is bounded by both the generalization error and the
discretization error. (c) Classifier guidance [13] can produce high-quality samples, but it needs to train a new guidance model that provides
gradient for the noised version of the images in every intermediate step. (d) Our FlowGrad adds control variables to each time step of
the complete ODE trajectory, and optimizes the control variables with gradients from the guidance model. Compared with other methods,
FlowGrad has smaller discretization error, enjoys the powerful encoding ability of ODE models, and does not require a noised guidance
model.

2.1. Probability Flows

Given i.i.d. samplesD = {x(i)}Ni=1 from a data distribu-
tion πdata, a probability flow can be effectively learned by
training a velocity field vθ(xt, t) of an ordinary differential
equation, which is indexed by a continuous time variable
t ∈ [0, T], to map a simple distribution π0 to the complex
target distribution πdata. Without loss of generality, we as-
sume T = 1. Probability flows shift the initial distribution
π0 in a deterministic way,

dxt = vθ(xt, t)dt, x0 ∼ π0, (1)

Traditionally, vθ can be trained by the adjoint method [10]
with the extra cost of solving an ODE during training.
Later, researchers propose to extract probability flows from
learned diffusion models as a way to save computation [39,
40]. Recently, a series of methods focus on directly design-

ing the target velocity field and learning vθ by regressing
the target field [3, 21, 44].

Once vθ is learned, one can simply sample from the ODE
to get x1 as draws from the target distribution π1 with N -
step Euler solver,

x(k+1)/N = xk/N +
1

N
vθ(xk/N , k/N), (2)

where k ∈ {0, 1, . . . , N − 1}, x0 = x0/N is a random sam-
ple from π0 and x1 = xN/N is the generated data. The
number of discretization steps, N , determines the closeness
of the simulated trajectory (2) and the continuous ODE tra-
jectory (1). When N →∞, the simulated trajectory (2) has
approaches the same end point as the continuous one. In
practice, it is often found that an appropriate choice of N
for existing probability flow ODEs ranges from 20 to 200.

Representative ODE-based Generative Models Ex-
isitng ODE-based generative models can be can be char-
acterized by the same framework [23, 40, 42]. Let Xt be
any differentiable interpolation of x0 ∼ π0 and x1 ∼ πdata,
then, v can be learned by minimizing

Et∼Uni(0,1)
x0∼π0

x1∼πdata

[
∥∥∥Ẋt − vθ(Xt, t)

∥∥∥2], (3)

where Ẋt denotes the time derivative of Xt. Recti-
fied flow [21] is the special case when Xt = tx1 +
(1 − t)x0, and DDIM [39, 40] corresponds to Xt =
αtx1 + βtx0 with x0 a Gaussian distribution, αt =
exp

(
−5a(1− t)2 − 0.05(1− t)

)
and βt =

√
1− α2

t .

Straightness and Fast Simulation The N needed to ac-
curately discretize and simulate the ODE depends on how
straight the trajectories are. In particular, if the trajectories
of the ODE is straight, that is vθ(Xt, t) = vθ(x0, 0),∀t ∈
[0, 1], where Xt = tx1+(1−t)x0 and x1 is the end point of
the trajectory, then a single Euler step yields exact solution,

x1 = x0 + vθ(x0, 0). (4)

Most of the existing ODEs do not necessarily produce
straight trajectories. Although [21] proposes a reflow proce-
dure to straighten the ODE trajectory and allow generation
with very small N , it still needs a curved trajectory to gener-
ate high-quality images. For these typical non-straight ODE
trajectories, a small N leads to non-realistic blurry genera-
tion.

2.2. Encoding and Latent Space

The ODE model can be viewed as an auto-encoder, in
which each data point x1 can be encoded to x0, and the
decoding (x0 → x1) and encoding (x1 → x0) can be sim-
ply realized by solving the ODE forwardly, and backwardly.
Specifically, with N -step Euler solver, we can encode x1 by

xk/N = x(k+1)/N −
1

N
vθ(x(k+1)/N , (k + 1)/N), (5)

Encoding/Decoding with ODEs is extremely simple with
nearly perfect reconstruction. This avoids the complicated
encoding strategy and imperfect reconstruction in GAN in-
version [1, 2, 41], making ODEs favorable for real image
editing.

3. FlowGrad
In this section, we introduce how to efficiently back-

propagate the gradient through the trajectory of an ODE,
and provide acceleration schemes to effectively decrease the
computational cost.

3.1. The Optimal Control Framework and Chal-
lenges

Beyond unconditioned generation, we would like to di-
rectly control the generated contents given by the ODE from
a starting point x0. To achieve this, we can define a differ-
entiable loss function L to control the end point x1 towards
our expectation by minimizing the following optimal con-
trol problem,

min
u
L(x1) + λ

∫ 1

0

||u(t)||2dt,

s.t. x1 = x0 +

∫ 1

0

(vθ(xt, t) + u(t)) dt,

(6)

where u(t) is a control function. This continuous optimal
control problem is intractable, since the velocity field vθ,
which is usually represented by a neural network, is com-
plicated. Instead, we turn to the discretized version of this
problem,

min
u
J := L(x1) + λ

N−1∑
k=0

||uk/N ||2

s.t. x(k+1)/N = xk/N +
1

N

(
vθ(xk/N , k/N) + uk/N

)
,

(7)
where k ∈ {0, 1, . . . , N − 1} and we adopt N -step Euler
discretization.

Challenges A straightforward optimization method for
problem (7) is to run the simulation with Euler discretiza-
tion, compute the gradient for each uk/N and perform gradi-
ent descent. However, compute the gradient∇uk/N

J needs
to back-propagate through a chain with N − k nested vθ.
Since vθ is a neural network, computing the gradient for
the nested structure requires overwhelming GPU memory in
current auto-differentiation framework, like PyTorch [32],
when the depth is large. For example, with a Nvidia TITAN
XP GPU with 12GB memories, we can only compute the
gradients for k < 4 with direct back-propagation.

3.2. Decomposition of the Back-propagation

To allow gradient computation for all the uk/N , we pro-
pose to decompose the gradient computation by leveraging
the following fact,

∇xk/N
J = (∇x(k+1)/N

J) · Jϕk
(xk/N), (8)

where ϕk(x) = x+ 1
N (vθ(x, k/N)+uk/N) and Jϕk

(xk/N)
is the Jacobian of ϕk at point xk/N . Typically, the Jaco-
bian is costly to obtain in the auto-differentiation frame-
work. Fortunately, Eq. (8) is a vector-Jacobian product,
which is much easier to get than the whole Jacobian. For

Figure 2. To accelerate the back-propagation, we approximate the
trajectory generated by Euler discretization using non-uniform dis-
cretization. We can significantly decrease the number of vector-
Jacobian products with acceptable error in gradient computation.

example, in PyTorch, the vector-Jacobian product can be ef-
ficiently computed with the double-backwards trick [32], at
the cost of two normal backwards. After the gradient at the
end point,∇x1

J (x1), is computed, we can get the gradient
∇uk/N

J = 1
N∇x(k+1)/N

J by iteratively applying Eq. (8).
Then we can then minimize J with gradient descent,

uk/N ← uk/N − α∇uk/N
J , (9)

where α is the step size set by the user.

3.3. Acceleration: Using non-uniform discretiza-
tion

Although in Section 3.2, we are able to solve the op-
timization problem (7) through decomposing the back-
propagation, its time consumption is still unacceptable. To
compute the gradients for all the u(k/N) and perform one
gradient descent, it takes ∼ 18s on TITAN XP with a pre-
trained Rectified Flow model on 256 × 256 images when
N = 100. In comparison, it only takes 7s to simulate the
ODE trajectory and generate the image x1 with Euler dis-
cretization.

For better efficiency in back-propagation, we turn to non-
uniform discretization rather than naive Euler discretiza-
tion. Non-uniform discretization simulates the ODE with
the following equation,

xtj+1
= xtj + (tj+1 − tj)vθ(xtj , tj), (10)

where G := {tj}N
′

j=0 is a set of grid points that satisfies
t0 = 0 and tN ′ = 1. If we can find G that contains only a
few elements but small discretization error, then we can sig-
nificantly reduce the number of applying Eq. (8) and hereby
save time.

Inspired by the properties of straight ODEs, we propose
to detect the straight parts on the ODE trajectory and ap-
proximate the trajectory with the non-uniform discretization
for fast back-propagation. Formally, our method consists of
three steps:

Method Full BP ξ = 5e− 3 ξ = 1e− 2

Time (s) 17.7 1.4 1.1

Table 1. Average running time for computing the gradients for all
the variables on the trajectory with a pre-trained Rectified Flow
ODE and the same TITAN XP GPU.

Step 1: ODE Simulation We run Euler discretization for
N steps to generate the ODE trajectory as in Section 3.1
and save the velocities {vk := vθ(xk/N , k/N)}N−1

k=0 .

Step 2: Approximation with Non-uniform Discretization
We define the straightness at time k/N as,

S(k/N) = max(d(vk−1, vk), d(vk+1, vk)), (11)

where d(v1, v2) = ||v1 − v2||2/||v2||2 measures the rel-
ative change in velocity. If S(k/N) is small, the veloc-
ity is almost invariant at time k/N and we can consider
t ∈ [(k−1)/N, (k+1)/N] is ‘straight’. Using the straight-
ness measurement, G can be constructed by,

t0 = 0,

N(tj+1 − tj) = argmin
m

{
m∑
i=1

S(tj +
i

N
) ≥ ξ,

}
,

where 1 ≤ m ≤ N(1− tj) and stop when tj = 1.

(12)

Here, ξ is a hyper-parameter to control the tolerance of
straightness. As ξ increases, the minimal m becomes larger
and the number of elements in G decreases. Thus, a large ξ
can reduce the computational time at the cost of introducing
more error. Note that all the element tj in G also belongs to
the grid points of Euler discretization {k/N}Nk=0.

Step 3: Fast Back-propagation Now that the ODE tra-
jectory can be represented by the new non-uniform dis-
cretization with only N ′ << N steps, we can compute the
gradient for utj with only N ′ times of vector-Jacobian prod-
uct computation. Specifically, we have,

∇xtj
J = (∇xtj+1

J) · Jϕ′
j
(xtj), (13)

where ϕ′
j(x) = x+ (tj+1 − tj)(vθ(x, tj) + utj). And cor-

respondingly,∇utj
J = (tj+1 − tj)∇xtj+1

J .

Re-assignment After the computation of {utj}N
′

j=1, we
re-assign the values to each uk/N to allow Euler dis-
cretization in the next iteration. Specifically, for k ∈
[Ntj , Ntj+1), we assign uk/N = utj , so that the result still
holds when simulated with Euler discretization.

Algorithm 1 FlowGrad: An efficient algorithm for back-
propagation and optimization with ODEs

Input: A pre-trained ODE velocity vθ, a differentiable
guidance for clean images L, number of Euler discretiza-
tion steps N , the number of optimization iterations M ,
penalty coefficient λ, threshold ξ and step size α.

Procedure:
Initialize all the variables {u(k/N)}N−1

k=0 to zero.
for i in 1 : M do

// Simulate the PF ODE trajectory
for k in 0 : (N-1) do

x(k+1)/N = xk/N + 1
N

(
vθ(xk/N , k/N) + u(k/N)

)
,

end for
Save {vk := vθ(xk/N , k/N)}N−1

k=0 .

// Approximate with Non-uniform Discretization
for k in 0 : (N-1) do
S(k/N) = max(d(vk−1, vk), d(vk+1, vk)),

end for
Construct G with Eq. (12).
Compute gradient with Eq. (13).

// Update the variables
Compute {utj}N

′

j=0 and re-assign the values to uk/N .
end for

4. Related Works

GAN Inversion Using the latent space of pre-trained
GANs for image editing has attracted much attention and
achieved impressive results [43]. The rich latent spaces
learned by modern GANs allow high-quality modifica-
tion on images of human faces, animals, natural scenes,
etc. [2,7,11,29,31,38,49], even generate out-of-distribution
images under language guidance [22, 33]. However, due to
the highly non-convex landscape of the latent space of pre-
trained GANs, how to satisfactorily embed the images into
the latent spaces is a difficult problem [1, 15, 43, 48], which
affects the later performance on editing the images.

SDE and ODE-based Generative Models Recently, dif-
fusion models gains popularity because of their astonishing
power in learning generative models on various domains,
e.g., images, molecules and point clouds [9, 12, 20, 23, 25,
37, 40, 42]. Unlike GANs, diffusion models do not have a
one-to-one mapping between images and noises in the la-
tent space. On the contrary, ODE-based models, either de-
rived from pre-trained diffusion models [39, 40] or directly
learned from scratch [16, 21, 44], can map a latent code to
a determinisitc image, while enjoying the high generation
quality like diffusion models. Moreover, by running the

ODE solver in the reverse way, it is straightforward to find
the corresponding latent code for a given image, with nearly
perfect reconstruction, which makes it favorable over GAN
inversion [40]. However, even equipped with acceleration
methods like [4, 26], both SDE and ODE-based models re-
quire more than 20 iterations to generate a high-quality im-
age, making it impossible to naively migrate the optimiza-
tion techniques for image editing in GAN inversion to these
novel models.

Controlled Generation with ODE and SDE-based Mod-
els Because of the inherent difference between GANs
and SDE/ODE-based models, a variety of new methods
have been proposed for controlled generation with diffu-
sion models [5,6,18,19,27,28,30,34,40,47]. In [9,30,40],
a guidance model for noisy images is trained to guide the
model in the intermediate time steps of SDE. Training the
noised guidance model is time-consuming and expensive.
[5, 28] propose to edit or generate realistic images from
coarse strokes or reference images, but their methods can
only find images that are close in the Euclidean space thanks
to the noise in SDEs. DiffusionCLIP [19] can manipulate
images according to CLIP guidance with SDEs, but it needs
to fine-tune the whole score function model for each text
prompt. This causes problem in storage and time consump-
tion. Our method can directly use guidance models pre-
trained on clean images, and manipulate the images follow-
ing text instructions with pre-trained frozen ODE models.

5. Experiments

We conduct a series of experiments on text-guided im-
age manipulation to demonstrate the effectiveness of our
FlowGrad. We apply FlowGrad on state-of-the-art ODE-
based generative models, including Rectified Flow (RF),
and Latent Diffusion Model (LDM) with DDIM. For all
the experiments, we use the accelerated FlowGrad with
ξ = 5e− 3 without further notification. Code is available at
https://github.com/gnobitab/FlowGrad.

5.1. Text-guided Image Manipulation

Zero-shot image manipulation with text guidance is
a desirable application for generative models after the
emergence of Contrastive Language-Image Pretraining
(CLIP) [35]. In this task, algorithms need to modify the
provided images according to the text instruction without
affecting the unrelated components on the image. Typical
methods for this task, e.g., StyleCLIP [33], rely on GAN
inversion. Recently, diffusion models are adopted for this
task for their superiority in reconstruction [19, 34], at the
cost of re-training or fine-tuning existing diffusion models.

Here, we apply FlowGrad to this task. Given an image

https://github.com/gnobitab/FlowGrad

Figure 3. We provide qualitative comparison between different text-guided image manipulation algorithms, including DiffusionClip [19],
StyleCLIP [33] with e4e encoder [41], FlowGrad + Rectified Flow (RF) [21] and FlowGrad + Latent Diffusion Model (LDM) [36]. The
input images are sampled from CelebA-HQ dataset. The unconditional RF is pre-trained on CelebA-HQ and the unconditional LDM is
pre-trained on FFHQ. We observe: (1) DiffusionCLIP causes unexpected changes in the style and color; (2) even with the state-of-the-art
e4e encoder and the strong StyleGAN2 generator, StyleCLIP generates images with noticable change in identity and background; (3)
ODEs can smoothly encode the input images and then edit the images by FlowGrad, without changing the unrelated elements. Note that
FlowGrad uses frozen pre-trained ODEs.

Method LPIPS (↓) ID (↑) CLIP (↑)
CG + RF [9] 0.346 0.643 0.292
CG + LDM [9] 0.383 0.513 0.298
DiffusionCLIP [19] 0.398 0.659 0.285
StyleCLIP [33]+e4e [41] 0.359 0.704 0.267
FlowGrad + RF 0.302 0.737 0.299
FlowGrad + LDM 0.298 0.743 0.294

Table 2. Quantitative comparison between different algorithms for
editing images from CelebA-HQ. ‘CG’ refers to Classifier Guid-
ance. We measure the LPIPS similarity and the identity similarity
between the original image and the manipulated images to reflect
faithfulness to the given image. Besides, we measure the Aug-
mented CLIP score of the manipulated images to reflect closeness
between the manipulated image and the text prompt. FlowGrad
yields the highest faithfulness to both the provided image and the
text prompt.

of interest xg , our loss function is defined as,

L(x1) = ηs(x1, T) + (1− η)||x1 − xg||,

where s(·, ·) is the similarity score between image x1 and
text prompt T given by the CLIP model, ||x1 − xg|| pe-
nalizes large variations from the original image xg , and
η = 0.7 for all the experiments. To avoid adversarial gen-
eration, we adopt the Augmented CLIP score [22] as s(·, ·).
The hyperparameter λ is set to 1e − 3. We exploit the of-
ficial pre-trained models including Latent Diffusion Model
(LDM) [36] on FFHQ [17] and LSUN Church [46], and
Rectified Flow (RF) [21] on CelebA-HQ [24]. We gener-
ate images with DDIM for LDM. For LDM, the Euler dis-
cretization step N = 200; for RF, N = 100. We set the step
size α = 10.0 and the number of optimization iterations
M = 10. We compare with state-of-the-art text-guided im-
age manipulation baselines, StyleCLIP [33] and Diffusion-
CLIP [19]. The details of the baseline configurations can be
found in Appendix A. The qualitative results are shown in
Figure 3, 4.

For quantitative comparison, we use the CelebA dataset,
randomly sampled 1, 000 images, and manipulate them with
text guidance. The text guidance contains {old, sad,
smiling, angry, curly hair}. As in [19], we
measure the face identity similarity, LPIPS similarity and
augmented CLIP score, to respectively show the closeness
to the original face, the original image and the text prompt.
The results are shown in Table 2. Comparison of the run-
ning time between different methods is reported in Table 4.

5.2. Identify Global Semantic Direction in Pre-
trained ODEs

Beyond editing individual images, we expect to find
global semantic direction u that generalizes across for a
wide range of images so that we can directly manipulate a

Figure 4. Qualitative comparison on LSUN Church. We apply
FlowGrad on LDM-Church.

(a) (b)
Figure 5. (a)We show the average straightness for each time step
k/N over 1,000 randomly sampled trajectories. For most of the
time steps, S(t) is below 0.001, implying an almost straight part.
(b) We examine different choices of the threshold ξ. The x-axis
is the running time of back-propagation in log scale. The y-axis
is loss L. Though one-step discretization (ξ =

∑N−1
i=1 S(i/N))

brings large approximation error and fails to generate meaningful
results, ξ ≤ 0.01 yields similar generation and loss.

new image without solving the optimization problem again.
Global semantic directions can be found by optimizing the
following loss function,

L =

n∑
i=1

ηs(x
(i)
1 , T) + (1− η)||x(i)

1 − x(i)
g ||,

where x
(i)
g are the training images. The global directions

found in frozen pre-trained LDM-FFHQ and RF-CelebA are
shown in Figure 6.

Figure 6. We show global directions found in frozen pre-trained ODEs with FlowGrad. We randomly generate 10 images as the training
set, and demonstrate the effectiveness of the obtained global directions on other synthesized images.

5.3. Ablation Study

In this section, we perform ablation studies to justify the
design choices of FlowGrad. The ablations studies are con-
ducted on text-guided image manipulation tasks.

Threshold ξ We examine the influence of the threshold
ξ. We set ξ = 0, 5e − 3, 1e − 2, where ξ = 0 results in
full back-propagation. Besides, we set ξ =

∑N−1
i=1 S(i/N),

which corresponds to the following one-step discretization,

x1 = x0 + vθ(x0, 0).

We adopt RF-CelebA for this study. The results are shown
in Figure 5b. We use the text prompt curly hair. We
observe that one-step discretization brings large error, and
ξ < 1e− 2 results in images with similar visual quality and
loss.

Sampling step N We examine the influence of reducing
the number of sampling steps N . We use RF-CelebA. The
results are shown in Figure 7. Smaller N generates over-
smoothed images and fails the manipulation task.

6. Conclusions
We propose FlowGrad, an efficient framework for con-

trolled generation with ODE-based generative models using

Figure 7. We investigate the influence of the number of Euler dis-
cretization steps N . When N is small, the discretization error
becomes large and the generation quality degrades.

gradients. Our FlowGrad decomposes the back-propagation
of the ODE trajecory, and compute the gradient with vector-
Jacobian products. Moreover, by re-approximating the
ODE trajectory with non-uniform discretization, FlowGrad
can save 90% of the back-propagation time with small com-
putation error. Experiments on text-guided image manip-
ulation and global semantic direction detection shows the
superiority of FlowGrad.

Acknowledgements
This research is supported by NSF CAREER1846421,

SenSE2037267, EAGER-2041327, Office of Navy Re-
search, and NSF AI Institute for Foundations of Machine
Learning (IFML).

References
[1] Abdal, R., Qin, Y., Wonka, P.: Image2stylegan: How to em-

bed images into the stylegan latent space? In: Proceedings
of the IEEE/CVF International Conference on Computer Vi-
sion. pp. 4432–4441 (2019) 2, 3, 5

[2] Abdal, R., Qin, Y., Wonka, P.: Image2stylegan++: How
to edit the embedded images? In: Proceedings of the
IEEE/CVF conference on computer vision and pattern recog-
nition. pp. 8296–8305 (2020) 1, 2, 3, 5

[3] Bansal, A., Borgnia, E., Chu, H.M., Li, J.S., Kazemi,
H., Huang, F., Goldblum, M., Geiping, J., Goldstein, T.:
Cold diffusion: Inverting arbitrary image transforms without
noise. arXiv preprint arXiv:2208.09392 (2022) 2

[4] Bao, F., Li, C., Zhu, J., Zhang, B.: Analytic-dpm: an an-
alytic estimate of the optimal reverse variance in diffusion
probabilistic models. In: International Conference on Learn-
ing Representations 5

[5] Choi, J., Kim, S., Jeong, Y., Gwon, Y., Yoon, S.: Ilvr: Condi-
tioning method for denoising diffusion probabilistic models.
In: Proceedings of the IEEE/CVF International Conference
on Computer Vision. pp. 14367–14376 (2021) 5

[6] Chung, H., Sim, B., Ye, J.C.: Come-closer-diffuse-faster:
Accelerating conditional diffusion models for inverse prob-
lems through stochastic contraction. In: Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. pp. 12413–12422 (2022) 5

[7] Daras, G., Dean, J., Jalal, A., Dimakis, A.: Intermediate
layer optimization for inverse problems using deep genera-
tive models. In: International Conference on Machine Learn-
ing. pp. 2421–2432. PMLR (2021) 1, 5

[8] Deng, J., Guo, J., Xue, N., Zafeiriou, S.: Arcface: Additive
angular margin loss for deep face recognition. In: Proceed-
ings of the IEEE/CVF conference on computer vision and
pattern recognition. pp. 4690–4699 (2019) 11

[9] Dhariwal, P., Nichol, A.: Diffusion models beat gans on im-
age synthesis. Advances in Neural Information Processing
Systems 34, 8780–8794 (2021) 1, 5, 7, 12

[10] Grathwohl, W., Chen, R.T., Bettencourt, J., Sutskever, I.,
Duvenaud, D.: Ffjord: Free-form continuous dynamics for
scalable reversible generative models. In: International Con-
ference on Learning Representations (2018) 2

[11] Härkönen, E., Hertzmann, A., Lehtinen, J., Paris, S.:
Ganspace: Discovering interpretable gan controls. Advances
in Neural Information Processing Systems 33, 9841–9850
(2020) 1, 5

[12] Ho, J., Jain, A., Abbeel, P.: Denoising diffusion probabilis-
tic models. Advances in Neural Information Processing Sys-
tems 33, 6840–6851 (2020) 1, 5

[13] Ho, J., Salimans, T.: Classifier-free diffusion guidance. In:
NeurIPS 2021 Workshop on Deep Generative Models and
Downstream Applications (2021) 1, 2

[14] Hoogeboom, E., Satorras, V.G., Vignac, C., Welling, M.:
Equivariant diffusion for molecule generation in 3d. In: In-
ternational Conference on Machine Learning. pp. 8867–
8887. PMLR (2022) 12

[15] Huh, M., Zhang, R., Zhu, J.Y., Paris, S., Hertzmann, A.:
Transforming and projecting images into class-conditional
generative networks. In: European Conference on Computer
Vision. pp. 17–34. Springer (2020) 5

[16] Karras, T., Aittala, M., Aila, T., Laine, S.: Elucidating the
design space of diffusion-based generative models. arXiv
preprint arXiv:2206.00364 (2022) 1, 5

[17] Karras, T., Laine, S., Aila, T.: A style-based generator archi-
tecture for generative adversarial networks. In: Proceedings
of the IEEE/CVF conference on computer vision and pattern
recognition. pp. 4401–4410 (2019) 7

[18] Kawar, B., Elad, M., Ermon, S., Song, J.: Denoising diffu-
sion restoration models. In: ICLR Workshop on Deep Gen-
erative Models for Highly Structured Data (2022) 5

[19] Kim, G., Ye, J.C.: Diffusionclip: Text-guided image manip-
ulation using diffusion models (2021) 1, 2, 5, 6, 7, 11, 12

[20] Kong, Z., Ping, W., Huang, J., Zhao, K., Catanzaro, B.:
Diffwave: A versatile diffusion model for audio synthesis.
In: International Conference on Learning Representations
(2020) 5

[21] Liu, X., Gong, C., Liu, Q.: Flow straight and fast: Learn-
ing to generate and transfer data with rectified flow. arXiv
preprint arXiv:2209.03003 (2022) 1, 2, 3, 5, 6, 7, 11

[22] Liu, X., Gong, C., Wu, L., Zhang, S., Su, H., Liu,
Q.: Fusedream: Training-free text-to-image generation
with improved clip+ gan space optimization. arXiv preprint
arXiv:2112.01573 (2021) 2, 5, 7

[23] Liu, X., Wu, L., Ye, M., Liu, Q.: Let us build bridges: Under-
standing and extending diffusion generative models. arXiv
preprint arXiv:2208.14699 (2022) 3, 5

[24] Liu, Z., Luo, P., Wang, X., Tang, X.: Large-scale celebfaces
attributes (celeba) dataset. Retrieved August 15(2018), 11
(2018) 7

[25] Lu, C., Zheng, K., Bao, F., Chen, J., Li, C., Zhu, J.: Max-
imum likelihood training for score-based diffusion odes by
high order denoising score matching. In: International Con-
ference on Machine Learning. pp. 14429–14460. PMLR
(2022) 5

[26] Lu, C., Zhou, Y., Bao, F., Chen, J., Li, C., Zhu, J.: Dpm-
solver: A fast ode solver for diffusion probabilistic model
sampling in around 10 steps. In: Advances in Neural Infor-
mation Processing Systems 5

[27] Lugmayr, A., Danelljan, M., Romero, A., Yu, F., Timofte,
R., Van Gool, L.: Repaint: Inpainting using denoising diffu-
sion probabilistic models. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition.
pp. 11461–11471 (2022) 5

[28] Meng, C., He, Y., Song, Y., Song, J., Wu, J., Zhu, J.Y., Er-
mon, S.: Sdedit: Guided image synthesis and editing with
stochastic differential equations. In: International Confer-
ence on Learning Representations (2021) 1, 5

[29] Menon, S., Damian, A., Hu, S., Ravi, N., Rudin, C.: Pulse:
Self-supervised photo upsampling via latent space explo-
ration of generative models. In: Proceedings of the ieee/cvf

conference on computer vision and pattern recognition. pp.
2437–2445 (2020) 1, 5

[30] Nichol, A., Dhariwal, P., Ramesh, A., Shyam, P., Mishkin,
P., McGrew, B., Sutskever, I., Chen, M.: Glide: Towards
photorealistic image generation and editing with text-guided
diffusion models. arXiv preprint arXiv:2112.10741 (2021) 1,
5

[31] Pan, X., Zhan, X., Dai, B., Lin, D., Loy, C.C., Luo, P.: Ex-
ploiting deep generative prior for versatile image restoration
and manipulation. IEEE Transactions on Pattern Analysis
and Machine Intelligence (2021) 1, 5

[32] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L.,
et al.: Pytorch: An imperative style, high-performance deep
learning library. Advances in neural information processing
systems 32 (2019) 3, 4

[33] Patashnik, O., Wu, Z., Shechtman, E., Cohen-Or, D.,
Lischinski, D.: Styleclip: Text-driven manipulation of style-
gan imagery. In: Proceedings of the IEEE/CVF International
Conference on Computer Vision. pp. 2085–2094 (2021) 1,
5, 6, 7, 11, 12

[34] Preechakul, K., Chatthee, N., Wizadwongsa, S., Suwa-
janakorn, S.: Diffusion autoencoders: Toward a meaning-
ful and decodable representation. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition. pp. 10619–10629 (2022) 5

[35] Radford, A., Kim, J.W., Hallacy, C., Ramesh, A., Goh, G.,
Agarwal, S., Sastry, G., Askell, A., Mishkin, P., Clark, J.,
et al.: Learning transferable visual models from natural lan-
guage supervision. In: International Conference on Machine
Learning. pp. 8748–8763. PMLR (2021) 1, 5

[36] Rombach, R., Blattmann, A., Lorenz, D., Esser, P., Om-
mer, B.: High-resolution image synthesis with latent diffu-
sion models (2021) 1, 6, 7

[37] Saharia, C., Chan, W., Saxena, S., Li, L., Whang, J., Den-
ton, E., Ghasemipour, S.K.S., Ayan, B.K., Mahdavi, S.S.,
Lopes, R.G., et al.: Photorealistic text-to-image diffusion
models with deep language understanding. arXiv preprint
arXiv:2205.11487 (2022) 5

[38] Shen, Y., Zhou, B.: Closed-form factorization of latent se-
mantics in gans. In: Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition. pp. 1532–
1540 (2021) 1, 5

[39] Song, J., Meng, C., Ermon, S.: Denoising diffusion implicit
models. In: International Conference on Learning Represen-
tations (2020) 1, 2, 3, 5, 11

[40] Song, Y., Sohl-Dickstein, J., Kingma, D.P., Kumar, A.,
Ermon, S., Poole, B.: Score-based generative modeling
through stochastic differential equations. In: International
Conference on Learning Representations (2020) 1, 2, 3, 5,
11

[41] Tov, O., Alaluf, Y., Nitzan, Y., Patashnik, O., Cohen-Or,
D.: Designing an encoder for stylegan image manipulation.
ACM Transactions on Graphics (TOG) 40(4), 1–14 (2021)
3, 6, 7, 12

[42] Wu, L., Gong, C., Liu, X., Ye, M., Liu, Q.: Diffusion-based
molecule generation with informative prior bridges. arXiv
preprint arXiv:2209.00865 (2022) 1, 3, 5

[43] Xia, W., Zhang, Y., Yang, Y., Xue, J.H., Zhou, B., Yang,
M.H.: Gan inversion: A survey. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence (2022) 1, 5

[44] Xu, Y., Liu, Z., Tegmark, M., Jaakkola, T.: Poisson flow
generative models. arXiv preprint arXiv:2209.11178 (2022)
1, 2, 5

[45] Ye, M., Wu, L., Liu, Q.: First hitting diffusion models for
generating manifold, graph and categorical data. In: Ad-
vances in Neural Information Processing Systems (2022) 1

[46] Yu, F., Seff, A., Zhang, Y., Song, S., Funkhouser, T., Xiao,
J.: Lsun: Construction of a large-scale image dataset us-
ing deep learning with humans in the loop. arXiv preprint
arXiv:1506.03365 (2015) 7

[47] Zhao, M., Bao, F., Li, C., Zhu, J.: Egsde: Unpaired image-
to-image translation via energy-guided stochastic differential
equations. In: Advances in Neural Information Processing
Systems 5

[48] Zhu, J., Shen, Y., Zhao, D., Zhou, B.: In-domain gan in-
version for real image editing. In: European conference on
computer vision. pp. 592–608. Springer (2020) 5

[49] Zhu, P., Abdal, R., Qin, Y., Femiani, J., Wonka, P.: Improved
stylegan embedding: Where are the good latents? arXiv
preprint arXiv:2012.09036 (2020) 1, 5

A. More Details on Experiment Configuration

Here, we provide more details for reproducing our ex-
periments.

Pre-trained Rectified Flow We acquire the pre-trained
models and corresponding sampling scripts from the au-
thors of [21]. The model is the same U-Net architecture
as NCSN++ [40], which contains ∼ 65 million parameters.

Pre-trained Latent Diffusion Models We acquire the
pre-trained models of Latent Diffusion Models from their
official open-sourced repository 1. The encoder and decoder
are associated with the pre-trained velocity network. The
size of the latent code for FFHQ is 3×64×64, and the size
of the latent code for LSUN church is 3×32×32. To manip-
ulate an image, we first use the encoder to encode an image
into the latent space of LDM to get x0, then use DDIM to
generate the result x1 in the latent space. x1 is then decoded
by the decoder to get the generated image. Since the de-
coder is differentiable, the gradient can be back-propagated
through the decoder.

Baselines For DiffusionCLIP2 [19] and StyleClip3 [33],
we adopted their official implementation from github with-
out modification and followed their instructions to manipu-
late images with text prompts.

For CG, we used the same loss as FlowGrad, grid
searched guidance magnitude over [1, 10, 25, 50, 100], and
reported the result with the lowest average loss. We com-
pute the gradient of CG w.r.t. to the predicted x1 in ev-
ery discretization step. In RF, x1 can be predicted by
x̂t
1 = xt + (1 − t)v(xt, t); In LDM-DDIM, x̂t

1 can be pre-
dicted by Eq. (12) in [39]. CG needs a guidance function L
that can take noisy images as input. In our implementation,
we use the same L that only works on clean images for clas-
sifier guidance as other methods for fair comparison. The
update rule for classifier guidance is,

x k+1
N

= x k
N
+

1

N
(vθ(x k

N
,
k

N
)− c∇x k

N

L(x̂
k
N
1)),

where c is a hyper-parameter that controls the magnitude of
the gradient guidance.

Identity Similarity For the identity similarity metric in
Table 2, we follow the previous works [19, 33] and use the
pre-trained ArcFace network [8].

1https://github.com/CompVis/latent-diffusion
2https://github.com/gwang-kim/DiffusionCLIP
3https://github.com/orpatashnik/StyleCLIP

Figure 8. Image manipulation with FlowGrad+RF-CelebA. The
text prompt is curly hair. Images directly generated from the
non-uniform discretization are over-smooth and unreal, while the
image generated with the re-assigned Euler discretization yields
high-quality generation with curly hair.

Additional Details for Identifying Global Semantic Di-
rections The number of training images n = 10 for the
experiment. The hyper-parameter λ = 1e − 3 as in image
manipulation. We use α = 10.0 and M = 20 since we
found the convergence is slower than manipulating one im-
age. The training images are synthesized by the generative
ODEs.

Re-assignment We found that , although a few-step non-
uniform discretization accelerates back-propagation, im-
ages directly generated following that non-uniform dis-
cretization have low-quality, as shown in Figure 8.

The reasoning of re-assignment is as follows: assuming
the ODE trajectory is nearly straight and velocity is nearly
invariant in [tj , tj+1], we have

xtj+1
= xtj + (tj+1 − tj)(vθ(xtj , tj) + utj).

Let us denote k1 = Ntj , k2 = Ntj+1, we know

xk2/N = xk1/N+(k2/N−k1/N)(vθ(xk1/N , k1/N)+utj).

Using re-assignment, for k ∈ [k1, k2), we assign uk/N =
utj , so that if we simulate with Euler discretization, we
have,

xk2/N = xk1/N +
1

N

k2∑
k=k1

(vθ(xk1/N , k1/N) + uk/N).

Therefore, with re-assignment, the terminal xk2/N is not
changed. With the complete N -step Euler discretization
and re-assignment, we can generate high-quality images ac-
cording to the guidance L.

B. Additional Quantitative Results
Quantitative Results on Image Manipulation with
LSUN Church For quantitative comparison, we use

https://github.com/CompVis/latent-diffusion
https://github.com/gwang-kim/DiffusionCLIP
https://github.com/orpatashnik/StyleCLIP

Method LPIPS (↓) CLIP (↑)
CG + LDM [9] 0.435 0.305
DiffusionCLIP [19] 0.382 0.274
StyleCLIP [33]+e4e [41] 0.502 0.287
FlowGrad + LDM 0.374 0.312

Table 3. Quantitative comparison between different algorithms
for editing images from LSUN Church. ‘CG’ refers to Classi-
fier Guidance. We measure the LPIPS similarity and the identity
similarity between the original image and the manipulated images
to reflect faithfulness to the given image. Besides, we measure the
Augmented CLIP score of the manipulated images to reflect close-
ness between the manipulated image and the text prompt. Flow-
Grad yields the highest faithfulness to both the provided image and
the text prompt.

the LSUN Church dataset, randomly sampled 1, 000
images, and manipulate them with text guidance. The text
guidance contains {wooden, colorful, stone,
Byzantine}. We measure the LPIPS similarity and
augmented CLIP score, to respectively show the closeness
to the original image and the text prompt. The results are
shown in Table 3.

Comparison in Running Time We provide the total run-
ning time of different algorithms on the same TITAN XP
GPU for image manipulation in Table 4.

Method Training New Image
Classifier Guidance [9] - 7.8s
DiffusionCLIP [19] ∼ 500s 4.4s
StyleCLIP [33]+e4e [41] - 8.2s
FlowGrad + LDM - ∼ 100s
FlowGrad + RF - ∼ 130s

Table 4. The total running time of different algorithms on the same
TITAN XP GPU for image manipulation on CelebA-HQ.

C. Additional Qualitative Results
We provide more qualitative results in the following fig-

ures, including multi-attribute manipulation and style ma-
nipulation.

D. Editing Molecules
Additionally, we applied FlowGrad to Equivariant Dif-

fusion for Molecules (EDM)4 [14] to show its impact in
molecule generation. We trained EDM on QM9 for 1000
epochs, drew 100 stable base molecules, then edited their
atom positions to achieve lower size (the average distance

4https://github.com/ehoogeboom/e3_diffusion_
for_molecules

Figure 9. The global directions found by FlowGrad can be directly
added together for multi-attribute image manipulation. In this ex-
periment, we use apply the global directions ueye-shadow, uangry and
ueye-shadow + uangry to the same input image with Rectified Flow.

Figure 10. Image manipulation with FlowGrad for multi-attribute
editing. In this experiment, we use LDM-FFHQ, and set our loss
function as L(x1) = η(η1s(x1, T1) + (1− η1)s(x1, T2)) + (1−
η)||x1 − xg||, where η = 0.7, T1 =smiling and T2 =old.
We vary the magnitude of η1 and find FlowGrad can interpolate
between the two attributes.

Figure 11. We provide generated images from classifier guidance
with LDM-FFHQ and LDM-Church. With a clean guidance func-
tion, classifier guidance cannot minimize the loss effectively, re-
sulting in unnatural images. The text prompt for the first row is
angry. The text prompt for the second row is stone.

https://github.com/ehoogeboom/e3_diffusion_for_molecules
https://github.com/ehoogeboom/e3_diffusion_for_molecules

Figure 12. Style Manipulation with different text prompts. Flow-
Grad + LDM can change the style while keep the irrelevant ele-
ments invariant.

between the atoms in the molecule), HOMO (the Highest Oc-
cupied Molecular Orbital energy), and LUMO (Lowest Un-
occupied Molecular Orbital energy) using FlowGrad/CG.
Like LDM, we use DDIM to transfer the diffusion pro-
cess into an generative ODE. The Euler discretization step
N = 1000. For editing HOMO and LUMO, we use the neural
network predictors trained on the real molecules in QM9 as
guidance. To ensure stability, we punished the deviation of
the atoms from its original position in the base molecule.
The loss function for molecule editing is,

L := Lproperty(M) +
1

N

N∑
i=1

||pi − p̂i||,

where M is the molecule, N is the number of atoms, pi
is the position of the i-th atom and p̂i is the original po-
sition of the i-th atom in the base molecule. The classes
of the atoms are kept unchanged. In this experiment, we
set the step size α = 5e − 4 for FlowGrad. We keep the
number of optimization iterations to M = 10 as before.
For CG baseline, we grid searched the guidance magnitude
over c ∈ [1e− 2, 1e− 3, 1e− 4, 1e− 5, 1e− 6]. We found
large guidance magnitude (c ≥ 1e − 3) sometimes causes
numerical issues in the sampling process with CG and the
loss underflows, so we pick from c ≤ 1e−4 with the lowest
average loss.

The results are shown in Table 5. Compared to classi-
fier guidance, molecules edited with FlowGrad had lower
values on all the three properties.

Method size HOMO LUMO
EDM 3.34 -6.31 -0.204
CG+EDM 3.11 -6.50 -0.232
FlowGrad+EDM 3.08 -6.58 -0.742

Table 5. Molecule editing with EDM.

	. Introduction
	. Background
	. Probability Flows
	. Encoding and Latent Space

	. FlowGrad
	. The Optimal Control Framework and Challenges
	. Decomposition of the Back-propagation
	. Acceleration: Using non-uniform discretization

	. Related Works
	. Experiments
	. Text-guided Image Manipulation
	. Identify Global Semantic Direction in Pre-trained ODEs
	. Ablation Study

	. Conclusions
	. More Details on Experiment Configuration
	. Additional Quantitative Results
	. Additional Qualitative Results
	. Editing Molecules

