
GEN: Pushing the Limits of Softmax-Based Out-of-Distribution Detection
Supplementary Material

A. Experimental Setup
Datasets Specifications of the datasets used in our exper-
iments are summarized in Table 1. ImageNet-1K represents
ID data, and ImageNet-O, OpenImage-O, iNaturalist, and
Textures are the OOD datasets. We also provide additional
results for two datasets used in the earlier work of Grad-
Norm [9] — SUN [22] and Places [23].

Input Images An input image to BiT [10] is resized to
480 × 480. For ViT [4], it is resized to 384 × 384. And
the size of input images to the remaining four architectures
RepVGG [3], Swin [15], DeiT [19], and ResNet-50-D [5]
is resized to 224× 224.

Dataset Class / Image Distribution # Images

ImageNet-1K (val) [17] predefined (ID) class list 50,000
ImageNet-O [8] natural adversarial images 2,000
OpenImage-O [21] natural (OOD) class distribution 17,632
iNaturalist [20] predefined (OOD) class list 10,000
Textures [2] predefined (OOD) class list 5,160
SUN [22] predefined (OOD) class list 10,000
Places [23] predefined (OOD) class list 10,000

Table 1. Specifications of ID/OOD datasets.

ReAct [18] vs. ReAct∗ Here we clarify the difference
between the original ReAct [18] and our local version,
ReAct∗. To use the consistent notation with the main pa-
per, z denotes the feature from the penultimate layer, b and
b∗ denote the clipping threshold of ReAct [18] and ReAct∗,
respectively. N is the number of samples in the training
dataset, and m is the dimensionality of the extracted fea-
ture. ReAct [18] is defined as following,

ReAct(z; b) = min(z, b) (1)

s.t.
card ({i : ztrain(i) < b})

mN
= q,

where ztrain = flatten(Ztrain) is the flattened array of fea-
tures Ztrain ∈ RN×m extracted from the training data,
card(·) is the cardinality and q is a pre-defined quantile,
e.g., q = 0.99. Intuitively, Eq. 1 indicates that ReAct [18]
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Figure 1. Performance of (top) Post-hoc OOD Detection Meth-
ods and (mid—bottom) Methods Requiring ID Train Data Applied
to 6 Classifiers Trained on ImageNet-1K. Reported are AUROC
values (%) averaged across the classifiers. Methods marked with
light squares use information from logits / probabilities. Methods
marked with dark crosses also use information from features.



employs all feature information extracted from the whole
training data to find the optimal clipping threshold b. In-
stead, ReAct∗ chooses the clipping threshold based on the
feature extracted from the current input only. ReAct∗ is de-
fined as following,

ReAct∗(z; b) = min(z, b∗) (2)

s.t.
card{i : zi < b∗}

m
= q,

where z ∈ Rm is an output of the penultimate layer applied
to the input sample.

Combining Different Scores While ViM [21] suggests
employing a scaled addition of the residual and the energy
score (which requires estimation of a normalization param-
eter), we decide to multiply the residual with our post-hoc
score, GEN. This avoids the need to estimate an additional
scalar parameter and appears also beneficial given the nor-
malization property of the geometric mean.

B. Averaged Performance Across Models
In Fig. 1, we report average AUROC across six classi-

fiers for the remaining two datasets as well as the other non-
post-hoc methods. One can see that GEN outperforms all
the post-hoc methods on iNaturalist and Texture datasets as
well as OpenImage-O and ImageNet-O shown in the main
paper (see Fig. 1 of the main paper). One can also notice
that GEN combined with Residual [21] is very competitive
to ViM [21] on all the OOD datasets.

C. Detailed OOD Detection Performance Re-
sults

We provide an extended version of Tables 3 and 4 of the
main paper reporting Per-Dataset Performance and Aver-
age Performance of OOD detection methods, respectively.
Due to the page capacity limitation, we split the extended
results into two tables. Table 3 shows the detailed OOD
detection performance on each architecture and each OOD
dataset for the post-hoc methods, and Table 4 — for the
methods that require ID training data. In addition, the av-
eraged performance across all six classifiers is reported in
the bottom-most block of both tables — these results are
graphically visualized in Fig. 1 of the main paper and Fig. 1
in this supplementary.

Recall that we rerun the experimental evaluation of OOD
detection methods according to the protocol in ViM [21]
with the exception of ODIN [13], and we obtained slightly
better results than reported in ViM [21]. For ODIN [13],
both the code and tuned hyperparameters (scale of the per-
turbation ε and temperature T ) were not provided by ViM,
therefore its results were taken from ViM [21] paper.

D. Extended Results for Effective Value
of M and γ

This section contains a more detailed evaluation for
our GEN score using varying choices for M and γ.
In particular, we illustrate the results for the four re-
maining architectures RepVGG [3], ViT [4], DeiT [19],
and ResNet-50-D [5]. The results for varying M ∈
{2, 10, 50, 100, 200, 500, 700, 800, 900, 1000} are depicted
in Fig. 2, where it can be seen that using more logit informa-
tion causes OOD detection performance to degrade for most
architectures except for ViT [4]. Besides, setting M = 100
seems perform well in terms of AUROC and FPR95 gener-
ally. The results of using different γ = {0.1, 0.3, 0.5, 0.9}
are shown in Fig. 3. The top row shows that using larger γ
barely improves the performance in terms of AUROC. The
same observation can be made regarding FPR95, which is
shown in the bottom row.

E. Performance on Unseen Datasets
We perform OOD detection on two completely unseen

OOD datasets from SUN [22] and Places [23]. Impor-
tantly, the overlapped classes between SUN / Places and
ImageNet-1K are removed as provided by [9]. We use
the previously validated hyperparameters M = 100 and
γ = 0.1. The results can be found in Table 2 indicating
a consistently better performance of GEN.

F. Using the Top Logits for the Energy Score
We empirically verify the hypothesis that using only

the partial information from the largest logits is benefi-
cial. In particular, the smallest logits seem to introduce
noise that might be especially detrimental for OOD de-
tection in large scale and fine-grained classification tasks
with a large number of semantic classes. The main pa-
per has a respective evaluation for our proposed score w.r.t.

OOD Method SUN Places Average
A↑ F↓ A↑ F↓ A↑ F↓

Averaged

MSP [7] 83.97 64.39 82.18 69.48 83.08 66.93
MaxLogit [6] 81.86 62.34 79.48 67.38 80.67 64.86
Energy [14] 79.53 65.13 76.68 70.72 78.11 67.93
GradNorm [9] 54.91 78.64 51.34 83.65 53.13 81.14
GEN (Ours) 84.99 61.34 82.79 65.98 83.89 63.66

KL Matching [6] 82.76 69.70 81.26 72.20 82.01 70.95
Mahalanobis [12] 81.88 72.25 79.40 75.36 80.64 73.81
ReAct [18] 77.61 65.08 74.25 71.42 75.93 68.25
pNML [1] 84.46 58.23 82.05 64.90 83.26 61.57
Residual [21] 78.53 77.66 75.52 80.40 77.03 79.03
ViM [21] 84.93 64.97 82.06 69.45 83.50 67.21
GEN (Ours) + Residual [21] 88.54 52.37 84.79 64.05 86.67 58.21

Table 2. OOD Detection Performance on Unseen Datasets.



Architecture + OOD Method OpenImage-O Textures iNaturalist ImageNet-O Average
AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓

BiT-S-R101x1
MSP [7] 83.05 76.21 79.76 77.13 87.90 64.53 57.16 96.90 76.97 78.69
MaxLogit [6] 82.33 79.75 81.65 73.59 86.78 70.52 62.99 96.90 78.44 80.19
Energy [14] 80.59 82.00 81.10 73.91 84.52 74.93 63.56 96.35 77.44 81.80
GradNorm [9] 70.68 79.34 83.12 55.72 86.13 58.34 53.73 91.90 73.42 71.33
ODIN [13] 85.64 72.83 81.60 74.07 86.73 70.75 63.00 96.85 79.24 78.63
ReAct∗ 80.83 81.85 81.44 73.74 84.77 74.80 63.63 96.30 77.67 81.67
Shannon Entropy 83.98 80.48 81.30 76.32 88.73 69.66 60.42 97.30 78.61 80.94
GEN (Ours) 83.77 80.43 81.48 77.93 88.67 68.32 66.09 97.30 80.00 81.00
GEN (Ours) + ReAct∗ 83.99 80.35 81.80 77.87 88.90 68.03 66.18 97.25 80.22 80.88

DeiT
MSP [7] 83.85 61.65 81.98 64.46 88.27 52.02 63.66 86.75 79.44 66.22
MaxLogit [6] 80.01 60.44 80.42 61.10 85.24 52.60 61.40 83.35 76.77 64.37
Energy [14] 74.56 66.36 77.41 64.77 78.64 65.80 60.63 82.60 72.81 69.88
GradNorm [9] 27.63 97.96 38.96 94.75 28.56 98.90 33.06 98.25 32.05 97.47
ODIN [13] 80.19 59.53 81.26 59.38 85.36 51.81 61.70 84.95 77.13 63.92
ReAct∗ 74.57 66.35 77.42 64.81 78.67 65.62 60.62 82.70 72.82 69.87
Shannon Entropy 84.71 57.54 83.50 59.05 89.29 47.55 64.93 83.00 80.61 61.78
GEN (Ours) 88.34 55.63 86.49 56.36 92.29 42.52 71.33 84.20 84.61 59.68
GEN (Ours) + ReAct∗ 88.33 55.72 86.48 56.45 92.27 42.68 71.33 84.25 84.60 59.77

RepVGG
MSP [7] 84.72 64.04 78.58 72.69 87.10 55.02 61.67 91.55 78.02 70.83
MaxLogit [6] 84.48 65.45 76.31 76.71 86.21 62.15 62.89 89.90 77.47 73.55
Energy [14] 83.36 70.08 74.51 82.87 83.92 75.49 63.38 88.00 76.29 79.11
GradNorm [9] 52.48 94.81 58.25 91.30 53.40 98.20 47.79 95.60 52.98 94.98
ODIN [13] 85.22 63.48 76.77 76.14 86.37 61.40 62.50 89.70 77.72 72.68
ReAct∗ 84.66 69.23 76.39 82.46 84.30 74.84 65.05 87.75 77.60 78.57
Shannon Entropy 85.82 64.09 78.86 74.92 87.77 58.55 63.60 89.70 79.01 71.81
GEN (Ours) 87.46 59.86 80.98 67.42 90.56 45.32 66.33 91.40 81.33 66.00
GEN (Ours) + ReAct∗ 88.66 59.31 83.20 67.07 91.00 44.78 68.67 91.40 82.88 65.64

ResNet-50-D
MSP [7] 84.56 63.55 82.71 64.71 88.57 50.38 56.14 93.75 77.99 68.10
MaxLogit [6] 81.90 65.04 79.17 66.16 86.39 53.35 54.40 92.55 75.47 69.28
Energy [14] 76.72 75.07 73.85 75.48 80.44 71.54 53.99 89.95 71.25 78.01
GradNorm [9] 38.85 97.75 54.68 90.41 41.74 98.06 40.88 98.10 44.04 96.08
ODIN [13] 81.53 64.49 80.21 63.93 86.48 52.58 52.87 93.25 75.27 68.56
ReAct∗ 77.01 74.88 74.32 75.12 80.59 70.94 54.27 89.85 71.55 77.70
Shannon Entropy 85.12 62.40 83.18 62.77 89.23 48.67 57.75 91.80 78.82 66.41
GEN (Ours) 88.09 58.59 86.43 57.25 92.25 39.97 64.24 92.50 82.75 62.08
GEN (Ours) + ReAct∗ 88.14 58.82 86.50 57.48 92.23 40.36 64.34 92.50 82.80 62.29

Swin
MSP [7] 91.38 34.81 85.31 51.74 94.76 22.97 78.86 63.90 87.58 43.36
MaxLogit [6] 92.09 26.70 84.81 47.23 95.71 15.34 81.07 52.10 88.42 35.34
Energy [14] 91.24 26.92 82.80 51.57 95.19 15.49 82.00 45.85 87.81 34.96
GradNorm [9] 45.52 77.94 37.12 93.02 33.79 88.81 50.27 78.05 41.68 84.45
ODIN [13] 91.38 28.42 85.74 44.59 94.24 19.65 80.62 53.65 88.00 36.58
ReAct∗ 91.23 26.98 82.79 51.69 95.18 15.50 82.00 45.90 87.80 35.02
Shannon Entropy 93.16 25.61 87.15 43.84 95.95 16.21 82.13 51.95 89.60 34.40
GEN (Ours) 94.70 22.60 89.43 40.95 97.25 11.55 84.45 54.00 91.46 32.28
GEN (Ours) + ReAct∗ 94.69 22.62 89.42 41.01 97.25 11.56 84.44 54.00 91.45 32.30

ViT-B/16
MSP [7] 92.17 34.96 87.13 48.45 96.13 19.14 81.88 65.00 89.33 41.89
MaxLogit [6] 96.73 16.58 93.05 30.27 98.57 6.53 89.88 44.00 94.56 24.34
Energy [14] 96.99 14.78 93.42 28.14 98.66 6.04 90.49 41.20 94.89 22.54
GradNorm [9] 93.79 20.94 89.76 34.26 97.34 8.54 80.38 50.90 90.32 28.66
ODIN [13] 96.86 15.68 93.01 30.60 98.57 6.58 89.85 44.15 94.57 24.25
ReAct∗ 96.98 14.87 93.41 28.35 98.66 6.01 90.49 42.10 94.89 22.83
Shannon Entropy 94.81 22.24 89.82 38.18 97.92 8.71 85.10 52.50 91.91 30.41
GEN (Ours) 96.60 17.13 92.35 34.01 98.63 5.83 89.67 47.60 94.31 26.14
GEN (Ours) + ReAct∗ 96.60 17.19 92.35 34.07 98.63 5.85 89.67 47.80 94.31 26.23

Averaged
MSP [7] 86.62 55.87 82.58 63.20 90.45 44.01 66.56 82.97 81.55 61.51
MaxLogit [6] 86.26 52.33 82.57 59.18 89.82 43.41 68.77 76.47 81.85 57.85
Energy [14] 83.91 55.87 80.52 62.79 86.89 51.55 69.01 73.99 80.08 61.05
GradNorm [9] 54.82 78.12 60.31 76.58 56.83 75.14 51.02 85.47 55.75 78.83
ODIN [13] 86.80 50.74 83.10 58.12 89.62 43.79 68.42 77.09 81.98 57.44
ReAct∗ 84.21 55.69 80.96 62.70 87.03 51.29 69.34 74.10 80.39 60.94
Shannon Entropy 81.98 52.06 83.97 59.18 91.48 41.56 68.99 70.71 83.09 57.63
GEN (Ours) 89.83 49.04 86.19 55.65 93.27 35.59 73.69 77.83 85.74 54.53
GEN (Ours) + ReAct∗ 90.07 49.00 86.62 55.66 93.38 35.54 74.11 77.87 86.04 54.52

Table 3. Performance of Post-hoc Methods. BiT-S-R101x1, DeiT , RepVGG, ResNet-50-D, Swin, and ViT-B/16are included along with
the averaged performance across models. The ID dataset is ImageNet-1K, the OOD datasets are OpenImage-O, Textures, iNaturalist and
ImageNet-O. Units for AUROC and FPR95 are percentages. The best performing method is in bold, the second best is underlined.



Architecture + OOD Method OpenImage-O Textures iNaturalist ImageNet-O Average
AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓

BiT-S-R101x1
KL Matching [6] 87.94 54.92 86.91 50.89 92.95 33.19 65.76 86.80 83.39 56.45
Mahalanobis [12] 82.62 66.24 97.33 13.95 85.79 64.71 80.37 70.20 86.53 53.77
ReAct [18] 82.54 79.06 84.85 68.60 86.89 70.16 64.81 95.65 79.77 78.37
pNML [1] 88.62 55.27 93.59 22.25 93.12 38.21 67.27 86.35 85.65 50.52
Residual [21] 80.20 68.05 97.67 11.14 76.93 80.18 81.58 65.60 84.09 56.24
ViM [21] 89.96 49.01 98.92 4.63 89.38 55.09 83.85 61.25 90.53 42.50
GEN (Ours) + ReAct [18] 87.44 70.07 88.35 63.86 91.63 53.30 70.81 93.80 84.56 70.26
GEN (Ours) + Residual [21] 91.75 43.83 98.54 5.78 92.25 47.13 83.88 63.70 91.61 40.11

DeiT
KL Matching [6] 87.29 60.58 84.88 63.35 90.56 50.45 71.09 84.25 83.46 64.66
Mahalanobis [12] 89.18 64.84 83.60 77.13 91.55 58.78 75.98 90.25 85.08 72.75
ReAct [18] 75.95 64.80 78.03 64.28 80.63 62.22 61.17 82.25 73.95 68.39
pNML [1] 86.68 57.86 86.02 56.32 90.54 47.45 69.10 83.95 83.09 61.39
Residual [21] 88.16 68.56 82.70 77.58 91.30 58.45 74.58 91.30 84.19 73.97
ViM [21] 89.21 63.84 84.43 73.12 92.13 52.86 75.34 89.40 85.28 69.81
GEN (Ours) + ReAct [18] 88.43 55.84 86.46 56.90 92.30 43.06 71.42 84.45 84.65 60.06
GEN (Ours) + Residual [21] 89.46 61.96 84.90 70.04 92.58 49.05 75.42 89.00 85.59 67.51

RepVGG
KL Matching [6] 86.49 57.53 83.20 61.92 89.06 42.24 66.42 84.90 81.29 61.65
Mahalanobis [12] 85.16 66.18 92.69 32.13 89.14 58.92 76.65 81.95 85.91 59.80
ReAct [18] 67.37 96.93 68.25 94.13 66.25 99.19 59.79 94.90 65.42 96.29
pNML [1] 88.75 49.92 86.02 44.22 89.91 46.67 68.23 80.65 83.23 55.37
Residual [21] 81.70 66.73 93.03 28.66 86.05 62.45 75.06 79.90 83.96 59.44
ViM [21] 88.68 53.82 93.68 23.88 91.33 46.91 76.90 79.20 87.65 50.95
GEN (Ours) + ReAct [18] 88.99 52.85 90.35 48.82 91.82 36.76 74.13 85.90 86.32 56.08
GEN (Ours) + Residual [21] 88.99 53.89 92.73 28.00 92.16 42.80 76.09 82.00 87.49 51.67

ResNet-50-D
KL Matching [6] 87.13 60.88 86.06 61.92 90.48 47.66 66.96 88.85 82.66 64.83
Mahalanobis [12] 88.69 58.71 94.15 28.14 89.51 62.34 80.10 76.35 88.11 56.38
ReAct [18] 81.63 66.16 84.68 54.17 84.55 60.71 59.86 84.75 77.68 66.45
pNML [1] 88.72 47.86 91.28 32.62 91.36 39.53 65.39 80.80 84.19 50.20
Residual [21] 86.47 62.86 94.63 25.66 84.70 75.79 81.10 73.45 86.72 59.44
ViM [21] 90.00 53.50 95.84 20.48 89.29 64.43 80.98 74.70 89.03 53.28
GEN (Ours) + ReAct [18] 89.20 55.86 89.17 50.93 92.72 38.48 67.24 91.05 84.58 59.08
GEN (Ours) + Residual [21] 90.18 53.41 95.24 23.51 90.67 58.33 80.19 78.50 89.07 53.44

Swin
KL Matching [6] 91.86 39.93 86.82 53.24 94.75 27.76 81.78 67.30 88.80 47.06
Mahalanobis [12] 94.35 34.85 89.95 49.09 98.69 5.38 85.43 73.65 92.11 40.74
ReAct [18] 91.83 25.92 83.33 50.54 95.90 13.84 82.26 45.75 88.33 34.01
pNML [1] 95.53 19.29 91.55 33.29 97.84 8.98 87.22 45.05 93.03 26.65
Residual [21] 94.44 33.40 91.36 43.26 98.90 4.79 86.66 68.65 92.84 37.53
ViM [21] 95.93 24.43 92.40 37.98 99.29 2.62 88.74 59.00 94.09 31.01
GEN (Ours) + ReAct [18] 95.09 21.94 89.71 41.22 97.75 9.45 84.84 56.10 91.85 32.18
GEN (Ours) + Residual [21] 95.73 25.06 92.23 37.66 99.13 3.10 88.07 61.50 93.79 31.83

ViT-B/16
KL Matching [6] 93.46 29.58 88.75 43.84 96.88 15.03 84.14 55.70 90.81 36.04
Mahalanobis [12] 97.33 14.32 94.21 25.27 99.53 2.15 92.78 37.00 95.96 19.69
ReAct [18] 97.24 13.99 93.54 27.62 99.01 4.21 90.74 41.90 95.13 21.93
pNML [1] 95.38 20.33 90.98 34.53 98.18 7.69 86.44 49.95 92.75 28.12
Residual [21] 91.86 36.41 92.04 34.73 98.58 6.56 88.35 48.30 92.71 31.50
ViM [21] 97.30 14.39 95.31 20.14 99.41 2.56 92.61 36.75 96.16 18.46
GEN (Ours) + ReAct [18] 96.77 16.37 92.41 33.70 98.95 4.34 89.79 47.95 94.48 25.59
GEN (Ours) + Residual [21] 97.29 14.17 94.41 25.17 99.38 2.67 91.83 40.75 95.73 20.69

Averaged
KL Matching [6] 89.03 50.57 86.10 55.86 92.45 36.05 72.69 77.97 85.07 55.11
Mahalanobis [12] 89.56 50.86 91.99 37.62 92.37 42.05 81.89 71.57 88.95 50.52
ReAct [18] 82.76 57.81 82.11 59.89 85.54 51.72 69.77 74.20 80.05 60.91
pNML [1] 90.61 41.76 89.91 37.20 93.49 31.42 73.94 71.12 86.99 45.38
Residual [21] 87.14 56.00 91.90 36.84 89.41 48.04 81.22 71.20 87.42 53.02
ViM [21] 91.85 43.16 93.43 30.04 93.47 37.41 83.07 66.72 90.45 44.33
GEN (Ours) + ReAct [18] 90.59 46.94 88.76 50.91 93.89 32.70 75.76 76.76 87.25 51.83
GEN (Ours) + Residual [21] 92.23 42.05 93.01 31.69 94.36 33.85 82.58 69.24 90.55 44.21

Table 4. Performance of Methods Requiring ID Data. BiT-S-R101x1, DeiT , RepVGG, ResNet-50-D, Swin, and ViT-B/16are included along
with the averaged performance across models. The ID dataset is ImageNet-1K, the OOD datasets are OpenImage-O, Textures, iNaturalist
and ImageNet-O. Units for AUROC and FPR95 are percentages. The best performing method is in bold, the second best is underlined.
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Figure 2. OOD Detection Performance of GEN Score with Varying M . Reported are (top) AUROC and (bottom) FPR95 values.
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Figure 3. OOD Detection Performance of GEN Score with Varying γ. Reported are (top) AUROC and (bottom) FPR95 values.

Swin [15] and BiT [10] architectures (see Fig. 4 in the
main paper), and here we demonstrate a similar behav-
ior for the Energy [14] score. The original Energy [14]
method simply uses all logits to calculate the score. We in-
stead utilize a subset of M largest logits. The results for
M = {1, 2, 5, 10, 20, 30, 50, 100, 200, 500, 700, 1000} are
shown in Fig. 4. It shows that AUROC decreases and
FPR95 increases for most of the classifiers except for
ViT [4] when the number of incorporated logits is increased.
That is to say, using more logits indeed degrades the OOD
detection performance of most architectures (with the ex-
ception of ViT [4]).

G. Sensitivity to Temperature Scaling
A pretrained network might also be adjusted to yield bet-

ter calibrated predictions. Since calibration methods rely on
some training data, which cannot be assumed to be avail-
able, we investigate into the sensitivity of post-hoc OOD
scores w.r.t. applying a classifier calibration. In particular,
we simulate the effects of the simple and popular temper-

ature scaling approach [16], which scales the logits by an
inverse temperature 1/T . Once the right temperature T is
determined (using validation data), it can be absorbed into
the layer generated the logits (and therefore the original log-
its might become inaccessible). We simulate temperatures
T ∈ {0.2, 0.5, 1, 2, 5} and illustrate the sensitivity of AU-
ROC and FPR95 values for post-hoc OOD detection scores
in Table 5.

The MaxLogit [6] score is agnostic to temperature scal-
ing by construction. It can be seen that GEN is relatively
insensitive to temperature scaling in terms of AUROC val-
ues, but shows some sensitivity in the FPR95 results. En-
ergy [14] is slightly less sensitive than GEN in terms of
FPR95 score, but more sensitive in terms of AUROC score,
and MSP [7] overall is more sensitive. GradNorm [9] shows
the highest sensitivity to temperature scaling. Note that all
methods (except the invariant MaxLogit [6] score) are rela-
tively sensitive in their FPR95 results.
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Figure 4. OOD Detection Performance of Energy Score with Vary-
ing M . Reported are (left) AUROC and (right) FPR95 values.

H. Comparison with GradNorm [9]

We conduct extra experiments on BiT [10] and Swin [15]
to test our approach. First, we compare our method to the
recent post-hoc method GradNorm [9], which claims that
using joint information from feature space and probability
space is helpful for OOD detection. Based on our experi-
mental observations, it is not always true, and the perfor-

Method Average Performance
AUROC ↑ FPR95 ↓

MSP [7] Temp-0.2 77.99 78.75
MSP [7] Temp-0.5 81.85 69.41
MSP [7] Temp-1 87.58 43.36
MSP [7] Temp-2 88.51 37.33
MSP [7] Temp-5 88.03 37.24

MaxLogit [6] Temp-0.2 88.42 35.34
MaxLogit [6] Temp-0.5 88.42 35.34
MaxLogit [6] Temp-1 88.42 35.34
MaxLogit [6] Temp-2 88.42 35.34
MaxLogit [6] Temp-5 88.42 35.34

Energy [14] Temp-0.2 88.48 35.03
Energy [14] Temp-0.5 88.70 33.82
Energy [14] Temp-1 87.81 34.96
Energy [14] Temp-2 62.34 61.23
Energy [14] Temp-5 62.43 61.67

GradNorm [9] Temp-0.2 13.47 99.84
GradNorm [9] Temp-0.5 15.70 98.89
GradNorm [9] Temp-1 41.68 84.45
GradNorm [9] Temp-2 19.25 99.50
GradNorm [9] Temp-5 14.37 99.85

GEN (Ours) Temp-0.2 89.53 38.94
GEN (Ours) Temp-0.5 90.82 34.74
GEN (Ours) Temp-1 91.46 32.27
GEN (Ours) Temp-2 87.24 61.46
GEN (Ours) Temp-5 84.23 69.88

Table 5. Sensitivity to Temperature Scaling. The reported is the
average performance across 6 classifiers —BiT-S-R101x1, DeiT ,
RepVGG, ResNet-50-D, Swin, and ViT-B/16— and 4 datasets —
OpenImage-O, Textures, iNaturalist, and ImageNet-O.

ARCH + OOD Method iNaturalist Texture OpenImage-O ImageNet-O
A↑ F↓ A↑ F↓ A↑ F↓ A↑ F↓

BiT-S-R101x1

FeatureNorm 74.67 77.50 74.30 65.95 53.97 87.64 50.54 93.30
ProbsDistance 86.66 73.96 81.27 77.05 82.51 82.49 65.64 96.95
GradNorm [9] 86.13 58.34 83.12 55.72 70.68 79.34 53.73 91.90
GEN (Ours) 88.67 68.32 81.48 77.93 83.77 80.43 66.09 97.30

Swin

FeatureNorm 4.05 100.00 15.65 99.61 11.32 99.90 22.55 99.90
ProbsDistance 94.64 20.78 86.33 45.43 92.45 26.78 82.91 47.85
GradNorm [9] 33.79 88.81 37.12 93.02 45.52 77.94 50.27 78.05
GEN (Ours) 97.25 11.55 89.43 40.95 94.70 22.60 84.45 54.00

Table 6. Feature vs. Probability Space. Using feature norms in
most cases degrades the performance hence making GradNorm [9]
unstable especially on the largest OpenImage-O [11] dataset.

mance depends on the model architecture. Second,
It is claimed in GradNorm [9] that using joint informa-

tion from feature space and probability space could achieve
better OOD results. There, feature information is repre-
sented as feature norm ∥z∥1, and probability information is
compressed as the total variation (i.e. l1-distance) between
uniform distribution and predictive distribution ∥p − u∥1.
We further investigate whether this conclusion holds for



other architectures and OOD datasets. We reproduce and
extend Table 5 of GradNorm [9] for all six architectures and
six OOD datasets. The results for BiT [10] and Swin [15]
are shown in Table 6, and results for other architectures can
be found in supplementary material. It can be seen that fea-
ture norms ∥z∥1 are not always distinctive for OOD detec-
tion and could cause occasional bad performance of Grad-
Norm [9]. Besides, our score which only uses information
from probability space outperforms the score using proba-
bility distance and GradNorm [9] in most datasets.

I. Analysis of GradNorm [9]: Dependence on
the Checkpoint

We compare the performance of OOD detection methods
for BiT-S-R101x1 architecture with two different weights
(checkpoints). The first one is the official checkpoint of
BiT [10] used by ViM [21], and the second one is the fine-
tuned set of weights provided by GradNorm [9]. The re-
sults in Table 7 are averaged AUROC and FPR95 on four
OOD datasets. One can notice that GradNorm [9] per-
forms worse when official checkpoint is used. However the
downstream performance—ImageNet classification, see Ta-
ble 2 in the main paper—is worse for the fine-tuned check-
point from GradNorm [9] indicating a certain bias in Grad-
Norm [9] checkpoint. Moreover, GEN consistently outper-
forms GradNorm [9] on the two most challenging datasets,
OpenImage-O and ImageNet-O.

Arch + Method iNaturalist Texture OpenImage-O ImageNet-O
A↑ F↓ A↑ F↓ A↑ F↓ A↑ F↓

BiT-S-R101x1

MSP [7] 87.90 64.53 79.76 77.1 83.05 76.21 57.16 96.90
MaxLogit [6] 86.78 70.52 81.65 73.59 82.33 79.75 62.99 96.90
GradNorm [9] 86.13 58.34 83.12 55.72 70.68 79.34 53.73 91.90
GEN (Ours) 88.67 68.32 81.48 77.93 83.77 80.43 66.09 97.30

BiT-S-R101x1 [9]

MSP [7] 87.57 63.94 76.87 81.51 80.18 80.56 55.55 97.65
MaxLogit [6] 89.38 62.71 78.53 79.81 80.35 81.93 59.26 97.70
GradNorm [9] 90.45 49.41 83.30 58.74 73.59 79.13 54.43 93.45
GEN (Ours) 89.03 68.20 77.85 86.45 81.34 83.31 63.26 97.45

Table 7. OOD Detection Performance Depends on Checkpoint.
OOD detection results for BiT-S-R101x1 with official check-
point [10] and the one provided by GradNorm [9]. The perfor-
mance of GradNorm [9] gets worse for the official weights.
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