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1. Discuss on Other Augmentation Methods for
Point Cloud

The Mixup-based [8] augmentation methods have been
extensively studied in the field of image classification and
widely applied in 2D semi-supervised object detection [6]
task. Following this idea, there have been several explo-
rations in point cloud tasks as well. PointMixup [1] first
applied the idea of Mixup to point cloud and achieved lin-
ear interpolation through the optimal allocation. Mix3D [3]
balances global contextual information and local geometric
information to achieve high-performance models. In addi-
tion, PointCutMix [9] proposes two different ways of re-
placing points to mix two point clouds. The latest SageMix
explores salient regions in two point clouds and smoothly
combines them into a continuous shape. However, these
methods mainly focus on point cloud classification and seg-
mentation tasks. For outdoor 3D object detection task,
objects are usually naturally separated [5], and merging
two point cloud scenes will cause overlaps between ob-
jects (e.g., two vehicles are rarely overlapped in 3D reality).
Therefore, to the best of our knowledge, the above Mixup-
based point cloud augmentation methods cannot be directly
applied to detection tasks, which is the direction for our fu-
ture research.

2. Visualization of Dynamic Dual-Threshold

To better understand the dual-threshold hierarchical su-
pervision in intuitive, we visualize the dynamic threshold
changes during the training process in Fig. 1, where a solid
line of a certain color represents a high threshold, and the
dotted line of the same color represents a low threshold.

3. Additional Experimental Results
(1) Additional experiments on the Waymo Dataset.
We additionally test the Voxel-RCNN [2] on 1% of the
Waymo [7] dataset, and the results in Tab. 1 still show the
superiority of our method, which validates its generaliza-
tion.
(2) If the shuffle data augmentation (SDA) strategy is
also effective for full supervision training ? To verify the
effect of the SDA on fully-supervised 3D object detector,
we inset the SDA into the PV-RCNN [4] and the results are
listed in Tab. 2, which shows that the superiority of SDA in
the supervised framework is not as obvious as in the semi-
supervised framework. This is due to that the design of
the strong augmentation in the student branch module has
two main purposes: (1) strong enough to make a significant
difference with weakly augmented samples of the teacher
branch and (2) not too strong to ensure effective supervi-
sion information transmission.
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Voxel-RCNN [2] 49.02/48.03 42.36/41.50 41.16/32.81 34.73/27.66 5.84/5.61 5.62/5.40
Ours (Voxel-RCNN-based) 54.89/54.06 48.28/47.53 43.86/37.84 36.59/31.56 17.47/16.73 16.72/16.01

Table 1. Results on the Waymo for the Voxel-RCNN detector

Model Data 3D Detection (Car) 3D Detection (Ped.) 3D Detection (Cyc.)
Easy Mod Hard Easy Mod Hard Easy Mod Hard

PV-RCNN [4] 100% 92.10 84.36 82.48 63.12 54.84 51.78 89.10 70.38 66.01
PV-RCNN [4] with SDA 100% 91.91 84.57 82.31 62.83 55.49 51.04 89.68 71.09 66.71

Table 2. Ablation study of SDA in the fully supervised framework.
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Figure 1. Visualization curve of the dynamic dual-threshold during
training
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