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Supplementary Material

1. Qualitative Examples
We present additional qualitative examples of the output of
our method (LEMaRT [SwinIH]) and three SOTA methods
(RainNet [10], iS2AM [12], DHT+ [5]) on the iHarmony4
dataset in Figure 3 and Figure 4. Similar to what we ob-
serve in Figure 5 of the main paper, our method is better
at color correction. The images generated by our method
have more natural colors and are closer to the ground truth
images. We also provide qualitative examples of the out-
put of our method (LEMaRT [SwinIH]), iS2AM [12] and
DHT+ [5] on the RealHM dataset in Figure 5. We see from
the first five examples that our method better harmonizes
composite images. We show a controversial example in the
last row. Different people may have different opinions re-
garding which harmonized image looks more natural.

2. Details of Data Generation Pipeline
The data generation pipeline of LEMaRT uses ten differ-
ent transformations to generate the data for pre-training.
The transformations include adjustments to brightness, con-
trast, hue, saturation and sharpness as well as blurring, de-
blurring, auto contrast, equalization and posterization. The
first five transformations adjust the brightness, contrast,
hue, saturation and sharpness of an image by a factor of
c, respectively, c ∈ [0.2, 1.8] for brightness adjustment;
c ∈ [0.3, 1.7] for contrast adjustment; c ∈ [0.7, 1.3] for
hue adjustment; c ∈ [0.5, 1.5] for saturation adjustment;
c ∈ [0.0, 2.0] for sharpness adjustment. We sample c uni-
formly. For blurring, Gaussian blur with kernel size (k1, k2)
(k1 ∈ [3, 9], k2 ∈ [5, 11]) is applied. For deblurring, we ap-
ply Gaussian blur to an image. The blurred image is treated
as the original image and the unblurred image is treated as
the transformed image. Auto contrast maximizes the con-
trast of an image by remapping its pixel values so that the
lowest value becomes 0 and the highest value becomes 255.
Equalization adjusts the histogram of an image so that the
histogram of the output image has a uniform grayscale dis-
tribution. Posterization reduces the number of bits for each
color channel of an image to n bits. n is uniformly sampled
from {1, 2, 3, 4, 5, 6}.

In Figure 2, we present additional examples that show
data generated for pre-training, i.e., the transformed im-
ages, the masks and the composite images, and the output

transformation diversity
dataset metric standard less

all

PSNR↑ 39.0 38.2
MSE↓ 20.9 26.0

fPSNR↑ 26.6 25.7
fMSE↓ 250.0 301.2

Table 1. Comparison of the performance of our method pre-trained
using different transformations.

of a pre-trained LEMaRT model given the generated data
(please refer to Figure 2 of the main paper for an illustra-
tion of the data generation pipeline of LEMaRT). The seven
different transformations used to perturb the original im-
ages are attached to the transformed images. We can see
that, after being pre-trained, our LEMaRT model can har-
monize the composite images that are generated using a va-
riety of transformations, e.g., brightness adjustment, pos-
terization, blurring. The results show that the our LEMaRT
model learns to handle different factors that cause appear-
ance mismatch between the foreground and the surrounding
background.

To understand the impact of the diversity of transforma-
tions to the performance of our model (LEMaRT [SwinIH]),
in Table 1, we compare the performance of our model pre-
trained with the set of transformations introduced above
(denoted as standard) and a set of transformations with less
diversity (denoted as less). Specifically, we halve the range
of the factor c that controls the diversity of the five trans-
formations which adjust the brightness, contrast, hue, sat-
uration and sharpness of an image, i.e., c ∈ [0.6, 1.4] for
brightness adjustment; c ∈ [0.65, 1.35] for contrast adjust-
ment; c ∈ [0.85, 1.15] for hue adjustment; c ∈ [0.75, 1.25]
for saturation adjustment; c ∈ [0.5, 1.0] for sharpness ad-
justment. We sample c uniformly. For blurring, Gaussian
blur with kernel size (k1, k2) (k1 ∈ [2, 5], k2 ∈ [2, 5]) is
applied. We do not use equalization. We see from Table 1
that pre-training our model using transformations with less
diversity results in 0.8 dB drop in PSNR and 5.1 increase
in MSE. This indicates that the diversity of the transforma-
tions has direct influence on the performance of our model.
However, empirically, we find that increasing the diversity
of the transformations further does not lead to better perfor-
mance. A possible reason is that samples created by those
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transformations are so unnatural that they seldom appear in
real world.

3. Comparison with SOTA Methods

We compare our method, LEMaRT [SwinIH], with SOTA
methods on iHarmony4. The results are shown Table 3. Ta-
ble 3 differs from the Table 1 of the main paper only in
that it shows all four metrics, i.e., PSNR, MSE, fPSNR,
fMSE (due to space constraints, the Table 1 of the main
paper does not show fPSNR and fMSE). Similar to what
we observe from the Table 1 of the main paper, our method
consistently outperforms other methods across the two ad-
ditional metrics (fPSNR and fMSE) on all subsets of iHar-
mony4. Our method achieves a fPSNR of 27.2 dB, which
is 1.3 dB higher than the previous best method. The fMSE
of our method is 213.3, which is 35.6 lower (14.3% relative
improvement) than the previous best method [7].

In Table 4, we further compare our method with four ad-
ditional image harmonization methods [2, 8, 9, 11] for com-
pleteness. [8,9] are published in ECCV’22. [11] is an arXiv
paper and [2] is a CVPR’22 paper. These four methods un-
derperform SCS-Co [7] with which we compare our method
in Table 1 of the main paper. We only present PSNR and
MSE as all four methods do not report fPSNR and three
of them, i.e., [2, 9, 11], do not report fMSE. We see that our
method outperforms all four methods. Our method achieves
a PSNR of 39.8 dB which is 1.6 dB higher than [11], i.e.,
the best of the four methods. The MSE of our method is
7.2 lower (30.0% relative improvement) than [11]. Har-
monizer also adopts a perturbation-reconstruction strategy
for training data generation. While Harmonizer [8] applies
transformations to perturb the manually labeled foreground,
LEMaRT perturbs regions specified by automatically gener-
ated masks. LEMaRT generates training data automatically
using the plentiful supply of unlabeled data. We see that the
MSE of our method is 8.8 higher than that of Harmonizer.
It is likely that this is caused by a few images on which our
method performs poorly (largest MSE over 1200.0, more
than 27 times of the average). As PSNR is in log space,
the images on which our method performs poorly has less
influence to PSNR than MSE.

4. Cause of Block-shaped Artifacts

In Figure 7 of the main paper, we show that only using
shifted window (Swin) attention occasionally causes block-
shaped artifacts. We explain the reason why the block-
shaped artifacts appear. In Figure 1, we present an illus-
tration of the Swin attention. Visual tokens within the same
window (shown in the same color) can attend to each other,
but cannot attend to their neighboring tokens in other win-
dows. For example, the two tokens that contain circles can-
not attend to each other, even if they are next to each other.

This may cause the block-shaped artifacts, and motivates
our proposed use of global attention to address this chal-
lenge.

Figure 1. Illustration of the shifted window (Swin) attention
which performs self-attention within local windows (window size
is 4 × 4). Visual tokens within the same window (shown in the
same color) can attend to each other, but cannot attend to their
neighboring tokens in other windows. For example, the two to-
kens that contain circles cannot attend to each other even though
they are next to each other. Hence, only using Swin attention may
cause block-shaped artifacts (shown in Figure 7 of the main pa-
per).

5. Additional Ablation Studies

pre-training dataset
dataset metric COCO OI COCO (50%)

all

PSNR↑ 39.0 38.9 38.5
MSE↓ 20.9 21.5 23.7

fPSNR↑ 26.6 26.5 26.1
fMSE↓ 250.0 253.7 280.0

Table 2. Comparison of the performance of our method pre-trained
using three different datasets, i.e., COCO, Open Images V6 (de-
noted as OI) and 50% of COCO dataset.

We investigate the influence of the pre-training dataset to
the performance of our method. We present a comparison of
the performance of our method pre-trained using three dif-
ferent datasets, i.e., the unlabeled set from MS COCO (de-
noted as COCO), 120K images from Open Images V6 (de-
noted as OI) and 50% of the unlabeled set from MS COCO
(denoted as 50% COCO) in Table 2.

We see that pre-training SwinIH with our method
(LEMaRT) on a set of 120K randomly sampled images
from Open Images V6 (roughly of same size as the un-
labeled set of MS COCO). The results are comparable to
those of SwinIH pre-trained on MS COCO (only 0.1 dB
lower PSNR and 0.7 higher MSE on iHarmony4). This in-
dicates that common images from the Internet can be used
for LEMaRT pre-training. We see that training our model
on 50% of COCO results in 0.4 dB drop in PSNR relative



to pre-training on 100% of COCO. This shows the benefit
of using a larger pre-training dataset.

6. Training Time and GPU Memory Require-
ment.

Pre-training our model (SwinIH) does not require addi-
tional hardware and pre-training time scales linearly with
dataset size. For example, pre-training SwinIH on COCO
takes 54% of the time required to train/fine-tune SwinIH
on iHarmony4 dataset. Compared to another Transformer-
based harmonization model DHT+ [5], SwinIH uses 18%
less time and 12% less GPU memory, underscoring the ef-
ficiency of our architecture.

7. User Study
We conducted a limited user study of our model compared
to DHT+ [5] using real data to complement our quantitative
results in the main paper. We randomly sampled 50 real
composite images from RealHM. Using the method in [7],
we had 7 participants who rated 1050 image pairs. The nor-
malized B-T score for LEMaRT was 51.31, and 48.7 for
DHT+, indicating our better qualitative performance. In our
future work, we will conduct a more comprehensive user
study with more participants and a larger number of images.
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composite DIH S2AM DoveNet BargNet IntrHarm RainNet iS2AM DHT+ SCS-Co LEMaRT
dataset metric image [13] [4] [3] [1] [6] [10] [12] [5] [7] [SwinIH]

HCOCO

PSNR↑ 33.9 34.7 35.5 35.8 37.0 37.2 37.1 39.2 39.2 39.9 41.0 ↑1.1

MSE↓ 69.4 51.9 41.1 36.7 24.8 24.9 29.5 16.5 15.0 13.6 10.1 ↓3.5

fPSNR↑ 19.9 20.7 22.5 22.5 - 24.0 22.4 - 25.8 - 26.9 ↑1.1

fMSE↓ 996.6 799.0 542.1 551.0 397.9 416.4 501.2 266.2 274.6 245.5 209.4 ↓36.1

HAdobe

PSNR↑ 8.2 32.3 33.8 34.3 35.3 35.2 36.2 38.1 37.2 38.3 39.4 ↑1.1

MSE↓ 345.5 92.7 63.4 52.3 39.9 43.0 43.4 21.9 36.8 21.0 18.8 ↓2.2

fPSNR↓ 17.5 22.4 24.3 25.1 - 25.9 25.0 - 27.1 - 29.2 ↑2.1

fMSE↓ 2051.6 593.0 404.6 380.4 279.7 284.2 317.6 174.0 242.6 165.5 147.3 ↓18.2

HFlickr

PSNR↑ 28.3 29.6 30.0 30.2 31.3 31.3 31.6 33.6 33.6 34.2 35.3 ↑1.1

MSE↓ 264.4 163.4 143.5 133.1 97.3 105.1 110.6 69.7 67.9 55.8 40.7 ↓15.1

fPSNR↑ 18.1 19.3 20.9 20.8 - 21.6 21.0 - 23.5 - 25.0 ↑1.5

fMSE↓ 1574.4 1099.1 785.7 827.0 698.4 716.6 688.4 443.7 471.1 393.7 342.7 ↓51.0

HD2N

PSNR↑ 34.0 34.6 34.5 35.3 35.7 36.0 34.8 37.7 36.4 37.8 38.1 ↑0.3

MSE↓ 109.7 82.3 76.6 52.0 51.0 55.5 57.4 40.6 49.7 41.8 42.3 ↑1.7

fPSNR↑ 19.1 19.7 20.5 20.6 - 21.7 20.2 - 21.7 - 22.8 ↑1.1

fMSE↓ 1410.0 1129.4 989.1 1075.7 835.6 797.0 916.5 591.0 736.6 606.8 580.5 ↓10.5

all

PSNR↑ 31.6 33.4 34.3 34.8 35.9 35.9 36.1 38.2 37.9 38.8 39.8 ↑1.0

MSE↓ 172.5 76.8 59.7 52.3 37.8 38.7 40.3 24.4 27.9 21.3 16.8 ↓4.5

fPSNR↑ 19.0 21.0 22.8 23.0 - 24.2 23.0 - 25.9 - 27.2 ↑1.3

fMSE↓ 1376.4 773.2 594.7 532.6 405.2 400.3 469.6 265.0 295.6 248.9 213.3 ↓35.6

Table 3. Our image harmonization method, LEMaRT [SwinIH], outperforms state-of-the-art (SOTA) methods on iHarmony4 across all
four metrics including fPSNR and fMSE (due to space constraints, fPSNR and fMSE are omitted in Table 1 of the main paper). PSNR
and MSE are shown in gray, as they have been shown in the Table 1 of the main paper. We repeat them for the readers’ convenience. The
column named composite image shows the results for the direct copy and paste of foreground regions on top of background images.

FRIH CDTNet S2CRNet Harmonizer LEMaRT
dataset metric [11] [2] [9] [8] [SwinIH]

HCOCO
PSNR↑ 39.4 39.2 38.5 38.8 41.0 ↑1.6

MSE↓ 15.1 16.3 23.2 17.3 10.1 ↓5.0

HAdobe
PSNR↑ 37.7 38.2 36.4 37.6 39.4 ↑1.2

MSE↓ 23.6 20.6 34.9 21.9 18.8 ↓1.8

HFlickr
PSNR↑ 33.5 33.6 32.5 33.6 35.3 ↑1.7

MSE↓ 68.9 68.6 98.7 64.8 40.7 ↓27.9

HD2N
PSNR↑ 37.9 38.0 36.8 37.6 38.1 ↑0.1

MSE↓ 42.8 36.7 51.7 33.1 42.3 ↑8.8

all
PSNR 38.2 38.2 37.2 37.8 39.8 ↑1.6

MSE↓ 24.0 24.7 35.6 24.3 16.8 ↓7.2

Table 4. Comparison between our LEMaRT [SwinIH] model and four additional image harmonization models [11], [2], [9], [8] on
iHarmony4. We include these models for completeness, although they underperform the state-of-the-art (SOTA) method [7] presented in
the main paper.
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Figure 2. Qualitative examples that show data generated for pre-training and the output of a pre-trained LEMaRT model given the generated
data. We apply brightness adjustment (row 1), hue adjustment (row 2), contrast adjustment (row 3), equalization (row 4), posterization
(row 5), blurring (row 6), deblurring (row 7) to generate the transformed images shown in the second column.



iS2AMcomposite image (input) DHT+ LEMaRT [SwinIH] (ours) ground truthRainNet

Figure 3. Qualitative comparison between our method (LEMaRT [SwinIH]) and three SOTA methods (RainNet [10], iS2AM [12], DHT+
[5]) on iHarmony4. Compared to other methods, LEMaRT is better at color correction, thanks to the pre-training process during which
LEMaRT learns the distribution of photo-realistic images.



iS2AMcomposite image (input) DHT+ LEMaRT [SwinIH] (ours) ground truthRainNet

Figure 4. Qualitative comparison between our method, LEMaRT [SwinIH], and three SOTA methods (RainNet [10], iS2AM [12], DHT+
[5]) on iHarmony4. We provide zoom-in views of regions in yellow rectangles. In the first example, the color of the horse in our image is
more natural and closer to that of the horse in the ground truth image than other images. We see from the second example that the texture
and the color of the leaf in our image are in harmony with those of the background. In the third example, the color of the mountain and its
reflection are better aligned in our image than other images. We see from the forth example that our method can better harmonize subtle
structures, i.e., small leaves and thin branches, than other methods.



DHT+composite image (input) LEMaRT (SwinIH) ground truthiS2AM

Figure 5. Qualitative comparison between our method, LEMaRT [SwinIH], and two SOTA methods (iS2AM [12], DHT+ [5]) on RealHM.
We see from the first five rows that our method can better harmonize a composite image than other methods. We show a controversial
example in the last row. Different people may have different opinions regarding which harmonized image looks more natural.
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