
Learned Image Compression with Mixed Transformer-CNN Architectures
(Supplementary Materials)

1. Classical Image Compression Standard Set-
ting

1.1. VVC

We use VTM-12.1 which is built form the website1 to
achieve VVC. The script from CompressAI 2 is utilized to
evaluate model. The command is as the following:

1 python -m compressai.utils.bench vtm [
path of image folder];

2 -c [path of VTM folder]/cfg/
encoder_intra_vtm.cfg

3 -b [path of VTM folder]/bin
4 -q 16, 18, 20, 22, 24, 26, 28, 30, 32,

34, 36, 38, 40

1.2. WebP

We use the API of Pillow (PIL) to achieve WebP algo-
rithm. The code is:

1 img.save(REC_WEBP, ’webp’, quality=
quality)

where quality is set as {5,10,15,20,25,30,35,40,45,50}.

2. Detailed Network Architecture
The architecture of the our method is shown in Fig.

1. The head dimensions of TCM blocks in ga and gs
are set as {8, 16, 32, 32, 16, 8}, while the head dimen-
sions of TCM blocks in ha and hs are set as 32. We
set channel numbers C of TCM blocks as 128/192/256
for Small/Medium/Large model. RBS and RBU have the
same architectures as in [4]. The numbers of channels
of the middle convolutional layers in RBS and RBU are
64/96/128 for our Small/Medium/Large model, while the
number of last layer of RBS and RBU is 128/192/256.
Here, to achieve the balance between running speed and
RD-performance, we reduce the slices number in [8] from
10 to 5. Therefore, we have 5 Channel-Conditional Pa-
rameter Nets with SWAtten to get {µ0,µ1,µ2,µ3,µ4}

1https : / / vcgit . hhi . fraunhofer . de / jvet /
VVCSoftware_VTM/-/releases/VTM-12.1

2https://github.com/InterDigitalInc/CompressAI/
tree/master/compressai/utils/bench

Table 1. BD-rate improvements against the VVC anchor. For dif-
ferent datasets, the anchor is recalculated based the corresponding
dataset. Lower BD-rate represents higher performance.

Methods Dataset BD-Rate
Cheng et al. [4]

Kodak
768x512

3.16
Xie et al. [9] -1.65
Chen et al. [3] -6.21
He et al. [5] -7.49
Ours (Large) -12.30
Ours (Medium) -9.65
Ours (Small) -7.39
Ballé et al. [1]

Tecnick
1200x1200

30.66
Xie et al. [9] -4.07
Kim et al. [6] 6.98
Ours (Large) -13.71
Ours (Medium) -11.29
Ours (Small) -9.53
Cheng et al. [4]

CLIC-P val
2K

6.77
Xie et al. [9] -2.60
Chen et al. [3] -7.15
Zou et al. [11] -3.68
Ours (Large) -11.85
Ours (Medium) -10.27
Ours (Small) -8.94
VVC - 0

and {σ0,σ1,σ2,σ3,σ4}. Also, we have 5 Latent Resid-
ual Prediction to get {y0,y1,y2,y3,y4}. All the restored
slices are concatenated as y which is sent to decoder gs to
get a decompressed image.

3. Comparison with Recent LIC Works

To get quantitative results, we present the BD-rate [2]
computed from PSNR-BPP curves as the quantitative met-
ric. The anchor RD-performance is set as the results of
VVC on different datasets (BD-rate=0%). The Table 1
shows the results. As results show, we outperform the pre-
vious works and achieve SOTA performance based on the
three datasets with different resolutions.

1

https://vcgit.hhi.fraunhofer.de/jvet/VVCSoftware_VTM/-/releases/VTM-12.1
https://vcgit.hhi.fraunhofer.de/jvet/VVCSoftware_VTM/-/releases/VTM-12.1
https://github.com/InterDigitalInc/CompressAI/tree/master/compressai/utils/bench
https://github.com/InterDigitalInc/CompressAI/tree/master/compressai/utils/bench
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Figure 1. The overall framework (left). The architectures of RBS and RBU in [4] (right).

4. Ablation Studies on Various Entropy Esti-
mation Models

To verify our TCM blocks can improve the overall RD-
performance, in addition to test the model with the channel-
wise entropy model in [8], we also try the model using the
spatial-wise entropy model in [7]. The results are shown in
Fig. 2. We define the model where the main path uses TCM
block as “TCMmain”. We compare the TCMmain model
using spatial-wise entropy model with “SwinT-Hyperprior”
model in [10] and the model in [4]. All of these three
methods use spatial-wise entropy models. The difference is
that our model is based on TCM block, the model in [4] is
based on CNN, and “SwinT-Hyperprior” is based on swin-
transformer. As we can see, our method can get the best
RD-performance. This suggests that the TCM blocks can
significantly improve image compression, and are robust to
different entropy models.
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Figure 2. Performance evaluation of the models using the spatial-
wise entropy model [7] on the Kodak dataset.

5. Ablation Studies on the Numbers of Slices

The number of slices s is an important hyper-parameter
for channel-wise entropy model in [8]. A larger number
leads to lower efficiency, while a lower number causes a
worse RD-performance. To find a suitable number, we test
some different number setting s = {2, 4, 5, 8, 10} for our
entropy model with the proposed SWAtten. The main path
of the tested model is the same as the main path in [8]. The
entropy model is also similar, the difference is that we add
SWAtten. The results are shown in Fig. 3. As we can see,
when s is low, we get a bad RD-performance. With s in-
creasing, the performance is improved. But when s > 5,
the improvement of the performance is not obvious, and
even decreases. This indicates that 5 slices have been able
to learn enough information in our model. Therefore, we set
s as 5 in our model to achieve the balance between running
speed and RD-performance.
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Figure 3. Effect of different slices numbers on RD-performance.
“convMain” means we use the main path in [8].



6. Abaltion Studies on the Design of SWAtten

We test the SWAtten w/o CNN for attention map (green
point) in Fig. 4. In addition, we also evaluate the case w/o
the swin transformer (yellow point). From the results, we
can see that using either of these two modules can bring
about 0.1dB PSNR improvement with fewer bitrates.
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Figure 4. The ablation study on SWAtten (using the same main
path as [8].

7. Visualization

We conducted a comparison between our TCM-based
model and both a CNN-based [4] and Transformer-based
[11] model using the Kodak dataset’s kodim19 and
kodim20 images. The results of this comparison are pre-
sented in Fig. 5. We focused our analysis on two local
regions, and the differences between the three models are
noticeable. In the upper local area of kodim19, our method
effectively reconstructed some of the road sign details while
making it easier to differentiate between the back fences.
The pasted poster color is also clearer and not distorted.
In contrast, our method generated fewer artifacts compared
to the CNN-based/Transformer-based models when recon-
structing the lower local region. For kodim20, our method
generated the clearest sign in the left local region, and we
achieved a clearer “E” letter than the other two methods in
the right local region.
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Figure 5. The visualization of kodim19 in Kodak dataset by using our TCM-based model, CNN-based model [4], and transformer-based
model [11]. PSNR|Bit-rate is listed in the last column.
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Figure 6. The visualization of kodim20 in Kodak dataset by using our TCM-based model, CNN-based model [4], and transformer-based
model [11]. PSNR|Bit-rate is listed on the subfigures’ right.
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