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This supplementary material provides additional infor-
mation for our proposed MMVC scheme, including the net-
work architectures, experimental settings, additional quali-
tative results, and an additional study on the impact of block
partitioning. To help understanding the overall datapath of
MMVC, a simpler overview diagram is provided to sup-
plement the detailed datapath figure available in the main
manuscript.

1. Model Architecture
The detailed architecture of our encoder E(·), decoder

D(·) and predictor networks POFC(·) and PFP(·) are pre-
sented in Figure 1, 2, 3, and 4.

Figure 1. Encoder network structure.

1.1. Feature Encoder

Figure 2. Decoder network structure.

*Equally contributed authors.

The architecture of our encoder E(·) is shown in Figure
1. We use 5 × 5 2D convolutional layers in ResBlock at
the first few layers, and we use 3× 3 conv layers for Multi-
ResBlocks layers. The first ResBlock has 64 output chan-
nels, while the others have 96 output channels. The conv
layer in Multi-ResBlock outside of the residual connection
has a stride of 2.

Figure 3. Optical Flow Conditioned Prediction network structure.

1.2. Feature Decoder

Figure 4. Feature Prediction network structure.

Figure 2 depicts the architecture of the decoder network
D(·). All transpose conv layers have 3 × 3 kernels ex-
cept for the last two ResBlocks. The first three Multi-
ResBlocks have 96 output channels, and we reduce this
number to 64, 32, and 3 respectively for the remaining
Multi-ResBlocks and ResBlocks. The transpose conv layer
in Multi-ResBlock outside of the residual connection has a
stride of 2.
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Figure 5. Simplified workflow of our proposed multi-mode video coding method. The current and previous frames are fed into the feature
extractor and then go through branches of prediction modes followed by residual channel removal, quantization, and entropy coding
process.

1.3. Prediction Network

The predictors POFC(·) and PFP(·) in MMVC have the
architectures demonstrated in Figure 3, 4. All conv layers
have the same kernel size of 3× 3. The output channel size
is 96 in ResBlocks and 128 for those in Multi-ResBlocks.

2. HEVC and VVC Configurations

2.1. HEVC Settings

We follow the experiment settings of [2] for HEVC en-
coding on ffmpeg under very-slow mode. The detailed com-
mand is presented as follows:
ffmpeg -pix fmt yuv420p -s WxH -r FR
-i Video.yuv -vframes N -c:v libx265
-preset veryslow -tune zerolatency
-x265-params "qp=QP:keyint=GOP"
output.mkv

2.2. VVC Settings

For rate-distortion curve plotting and visualization gen-
eration, we perform experiments with the VTM 11.2 ver-
sion, under the low delay P setting. Following the prior

work [1], we choose the QP values to be 22, 25, 28, 31 to
achieve various rate-distortion trade-offs.

3. Inference Speed

The latency of our multi-mode approach is (roughly) lin-
early proportional to the number of modes, and it is higher
than a single-mode counterpart. Given the latent represen-
tation of each frame (pre-processing step), the encoding and
decoding speed is 1852ms and 536ms per 1080p frame, re-
spectively, with A40 single precision GPUs when one spe-
cific mode has a dedicated GPU (total 4 GPUs for 4 modes).

4. Details on Mode Selection Strategies

As shown in the workflow in Figure 5, all residuals under
different modes are obtained from the same target feature
representation by calculating the difference from the pre-
diction. When (quantized) residuals are added to the pre-
diction, all reconstructed frames from different modes have
similar quality. Hence, choosing the prediction mode that
generates the lowest entropy residual is naturally the best
strategy.



Figure 6. Visualization of a frame from the MCL-JCV dataset. Here we compare our reconstruction with results obtained from the
conventional standards, and also with the raw frame.

5. Subjective Quality Study

In Figure 6 we visualize a compressed frame from the
MCL-JCV dataset. For reference, we compare our result
with reconstructions from HEVC and VVC, along with the
raw frame. Compared with these conventional codecs, our
proposed MMVC can better preserve details around the par-
rot’s eye and texture of the feathers in our reconstruction
with similar or lower bitrate.

Table 1. The block size vs. bitrate comparison for different block
partition strategies. We set k = 16 as the anchor baseline. Num-
bers indicate the increased bitrate percentage under similar quality.

Partitioning UVG MCL-JCV Kinetics
k = 8 21.5% 25.6% 76.9%
k = 16 0% 0% 0%
k = 32 11.8% 13.9% 50.2%
k = 64 39.7% 46.9% 138.6%

We visualize the (pixel domain) residuals between pre-
vious / warped / (decoded) predicted / reconstructed frame
and the current frame at time t in Figure 7. All sub-figures
share the same color bar and scale, where darker color im-
plies lower magnitude, and lighter color indicates higher
magnitude. By this example, we observe that the optical
flow predicts static motions reasonably well, serving as a
useful condition in the following prediction stage. More-
over, with the ensemble of the best prediction path in each
block, we are able to get sparse residuals and small recon-
struction (quantization) errors.

6. Study on Block Partitioning

In our implementation, we set k = 16 to partition each
frame or feature representation to 16 × 16 blocks. Notice
that k does not change with the input frame size. It implies
that an input of higher resolution results in larger blocks. To
show the impact of different block partitioning method, we
experimented with k = 8, 16, 32, 64 on different datasets
and measured the k vs. bitrate performance as summarized
in Table 1. All tests with k = 16 achieve the best perfor-
mance (lowest bitrate), thus we use k = 16 as the baseline
for this evaluation. For smaller k values (larger blocks), the
likelihood of observing unchanged blocks deceases, reduc-
ing the utilization of the Skip Mode and therefore degrading
the overall performance. Larger k values (smaller blocks)
leads to higher chances of activating the Skip Mode. How-
ever, this strategy needs more bits to store the mode selec-
tion map, diminishing the benefits of using the sparse en-
tropy coding path more often given that run-length coding
has to operate with smaller windows. Therefore, having a
proper partitioning strategy in our scheme is a key to reach
to a balanced position in this trade-off.

7. Future Work

The proposed MMVC framework demonstrates the sig-
nificant benefit of having multiple specialized models and
datapath modes that are fine-tuned for certain contexts in the
video. A possible future research is to learn a ‘unified adap-
tive mode’ that can automatically apply different (implicit)
modes to each block of the frame. An automatic (learning-
based) mode selection / adaptation is a future research topic
to eliminate the overhead of evaluating all modes as in our
MMVC framework. Replacing the arithmetic coding in



Figure 7. Visualization of residuals between previous / optical flow warped / predicted / reconstructed frame and current frame in the pixel
domain. The result is presented as a heatmap, where the blue color indicates a small difference between the prediction and raw frame.

MMVC (for FP mode) to a ‘learned’ entropy coding model
is another promising future work.
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