
Supplementary Material for
MarS3D: A Plug-and-Play Motion-Aware Model for Semantic Segmentation on

Multi-Scan 3D Point Clouds

1. Details of Methodology

In this section, we expound upon the proposed methodol-
ogy by offering additional details and elucidations, thereby
facilitating comprehension for our readership. To begin
with, we denote all notations employed throughout the pa-
per in Table 1.

1.1. Embedding in CFFE Module

In the 3D branch, the Cross-Frame Feature Embedding
(CFFE) module introduces timestamp embeddings to bol-
ster the model’s temporal awareness for 3D representation
learning. Specifically, as shown in Figure 1, temporal em-
beddings (E) are summed up to the point-wise features (on
the top left on Figure 1) of our 3D branch to indicate their
respective timestamps. In other words, each point-wise fea-
ture is assigned with a distinct temporal embedding of E
to indicate in which timestamp it is collected. E is ran-
domly initialized at the beginning, and subsequently op-
timized alongside the other modules throughout network
training.

1.2. Feature Fusion

Upon receiving multi-scan point clouds as input, the
BEV branch and 3D branch respectively predict a multi-
channel motion-aware feature map Zm and enhanced spa-
tial features Ps. These two features are subsequently fused
to achieve the ultimate prediction. As shown in Figure 2,
for each feature of point in Ps ∈ RN×Dp denoted as psi ∈
R1×Dp , we query its corresponding BEV feature in Zm ∈
RH×W×Dz according to its coordinate (xi, yi, z), and the
dimension of the related feature is 1×Dz . The two features
from Ps and Zm are then channel-wisely concatenated to
derive the fused feature of the point as Pf

i ∈ R1×(Dp+Dz).
The ultimate fused features Pf ∈ RN×(Dp+Dz) is subse-
quently derived.

1.3. Prediction Head

The prediction head fcls is devised to predict the final
result. Figure 3 depicts the detailed architecture of the

Point-level Variables
multi-scan point features P in

temporal embeddings E
embedded features Pebd

enhanced spatial features Ps

fused features Pf

BEV 2D Variables
multi-scan BEV maps Bin

multi-scan feature maps U
discrepant feature maps D
motion-aware feature map Zm

Networks
2D CNN fu

multi-kernel CNN fm

NN layer fe

single-scan backbone fs

prediction head fcls

Logits
semantic category logits scpred

motion logits smpred

Losses
semantic category loss Lc

motion loss Lm

Table 1. Notations used in the paper.

head. Since MarS3D is designed to predict both the se-
mantic category of the input and its motion state, we de-
sign a dual-branch structure on the prediction head. The
semantic branch is designed for the purpose of semantic
prediction and the motion branch is intended to predict the
motion states. During inference, the points recognized as
movable categories are further predicted as either moving
or static based on the prediction generated by the motion
state branch.
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Figure 1. Visualization of the CFFE module. The top-left indicates
features from the NN layer, and bottom-left indicates the trainable
timestamp embeddings.
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Figure 2. Illustration of feature fusion from BEV branch and 3D
branch.
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Figure 3. Dual-branch structure of the prediction head.

2. Compatibility of MarS3D

In order to show the compatibility of the proposed plug-
and-play model, we adopt a variety of widely used mod-
els as backbones consisting of point-and-voxel-based ap-
proach SPVCNN [7] (implemented upon TorchSparse [6]),
and voxel-based approaches MinkUNet (implemented upon
Minkowski Engine [3]) and SparseConvUNet [5] (imple-
mented upon SpConv [4]). Following with the track of Se-
manticKITTI, we choose models designed for single-scan
tasks with only taking point clouds as input as the back-
bones, and these models are completely open source and
highly reproducible.

SemanticKITTI [1] Multi-Scan Dataset Ratio(%)
car (car) 4.08185
bicycle (bic.) 0.01661
motorcycle (mot.) 0.03984
truck (tru.) 0.20634
other-vehicle (ove.) 0.16497
person (per.) 0.01770
bicyclist (bil.) 1.11e-06
motorcyclist (mol.) 5.53e-07
road (roa.) 19.87965
parking (par.) 1.47172
sidewalk (sid.) 14.39230
other-ground (ogr.) 0.39049
building (bui.) 13.26862
fence (fen.) 7.23592
vegetation (veg.) 26.68150
trunk (trn.) 0.60350
terrain (ter.) 7.81422
pole (pol.) 0.28555
traffic-sign (tra.) 0.06156
moving-car (mca.) 0.17893
moving-bicyclist (mbi.) 0.01271
moving-person (mpe.) 0.01606
moving-motorcyclist (mmo.) 0.00375
moving-other-vehicle (mov.) 0.01574
moving-truck (mtr.) 0.01016
unlabeled 3.15018

Table 2. The ratio of the point number of each category (shown
with full and short name) in SemanticKITTI [1] multi-scan dataset.

3. Details of Dataset

3.1. SemanticKITTI

The paper presents the performance of MarS3D on each
category of SemanticKITTI [1], and the names of each cat-
egory are abbreviated for the sake of brevity in the table. In
Table 2, the short name and full name of each category are
mapped. In addition, as shown in Table 2, the distribution of
points across each category of SemanticKITTI is extremely
imbalanced. Such a skewness can potentially hinder the per-
formance of the model on certain categories, thereby em-
phasizing the need for future investigations to address this
issue.

3.2. NuScenes

Based on the annotations of the ‘lidar-seg’ task and 3D
object detection task of nuScenes [2] on the key frames of
LiDAR point clouds, we designed a multi-scan setting and
generated multi-scan segmentation annotations for all key
frames. This label expands the 16 categories of single-
scan ‘lidar-seg’ task to 24 categories, distinguishing the



Method Backbone mIoU
car bicyclist person motorcyclist other-vehicle truck

m. n. a. m. n. a. m. n. a. m. n. a. m. n. a. m. n. a.

Baseline
SPVCNN [7]

49.7 74.3 93.9 84.1 86.7 0.0 43.4 55.0 19.7 37.4 0.0 0.0 0.0 0.0 33.0 16.5 0.0 68.0 34.0

Ours 54.7 80.6 95.6 88.1 94.9 0.0 47.4 68.0 27.9 48.0 0.0 0.0 0.0 3.6 51.5 27.6 0.0 79.4 39.7

Baseline
SparseConv [5]

49.0 73.9 94.7 84.3 85.4 0.2 42.8 53.6 17.3 35.4 0.0 0.0 0.0 0.0 43.4 21.7 0.0 69.6 34.8

Ours 54.6 83.5 96.6 90.0 94.4 0.0 47.2 68.9 26.9 47.9 0.0 0.0 0.0 0.0 64.8 32.4 0.0 83.3 41.6

Baseline
MinkUNet [3]

48.5 69.2 93.8 81.5 83.1 0.0 41.6 52.5 18.0 35.2 0.0 0.0 0.0 0.0 41.3 20.6 0.0 90.3 45.2

Ours 54.7 82.6 96.4 89.5 93.1 0.0 46.6 64.4 31.6 48.0 0.0 0.0 0.0 0.1 62.7 31.4 0.0 93.9 47.0

Table 3. The quantitative results on SemanticKITTI [1] validation set. There are six categories that have two motion states: moving
(indicated as m.) and non-moving (indicated as n.). Also, we calculate the average mIoU (indicated as a.) for each semantic category for a
more comprehensive evaluation.
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Figure 4. Confusion matrix of the model with SPVCNN as the
backbone. Darker colors mean higher True Positive values.

motion state of categories that may move. Under this set-
ting, non-key frames without annotations serve as reference
frames fused with key frames as the input of the model,
and the training is completed using supervision from only
key frames, but not non-key frames, which we call semi-
sequential supervised learning. In this case, according to
the supervised learning paradigm, some voxels containing
excessive unlabeled points may lead to confusion during
training, thus affecting the performance of the model. In
order to avoid being affected by the lack of the supervision
when evaluating the performance improvement brought by
our proposed plug-and-play module, instead of using each
point as an evaluation element to calculate mIoU, we can
also consider each voxel as an evaluation element for this
task to calculate mIoU.

4. Additional Results and Discussion

In SemanticKITTI [1], there are six semantic categories
that have two motion states, and we conduct statistics on the
performance of MarS3D on these categories, as observed in
Table 3. To better understand and analyze the results, we
further provide the confusion matrix in Figure 4 based on
SPVCNN [7] backbone. Besides, we provide more visu-
alizations of different feature maps in Figure 5. MarS3D
has improved performance in almost every category. Espe-
cially, the model demonstrates high accuracy in recognizing
the motion state of objects.

For the evaluation results on nuScenes [2], We attempt
to evaluate the trained model at both the voxel level and
the point level in the absence of non-key frame (reference
frame) supervision. We find that the performance depends
on the semantic perception ability of different backbones
that can deal with the information of unlabeled point clouds
in shape and structure. This direction is worth exploring.

We run the main experiments and ablation studies multi-
ple times, and obtain statistical results as shown in Table 4.
The results indicate that MarS3D exhibits a robust percep-
tion and motion awareness capability in most semantic cat-
egories. In conclusion, MarS3D achieves significant im-
provements over all baseline methods, including the state-
of-the-art. Additionally, MarS3D demonstrates robust mo-
tion perception, which can enhance the safety and intelli-
gence of autonomous driving systems.

The proposed model presented in this study demon-
strates the ability to classify both semantic categories and
motion states. For independent evaluations of them, Ta-
ble 5 demonstrates the substantial improvement brought by
MarS3D. Furthermore, our findings indicate that the im-
provement in semantic perception stems from the proposed
model itself rather than the incorporation of additional la-
bels. To support this claim, we conducted experiments
where we trained a model without motion state supervision
based on SPVCNN. The results indicated that the model
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Figure 5. More zoom-in discrepant feature maps from the inference of MarS3D are shown compared with motion BEV ground truth.
Brighter region means higher confidence of moving objects. Our prediction is highly consistent with the GT.

Backbone baseline +CFFE +BEV +CFFE+BEV MarS3D

SPVCNN 49.7±0.1 50.6±0.4 53.3±0.1 53.9±0.1 54.7±0.1

SparseConv 48.8±0.2 51.3±0.2 53.9±0.1 54.2±0.2 54.5±0.1

MinkUNet 48.1±0.4 52.1±0.1 53.1±0.3 54.1±0.1 54.6±0.1

Table 4. Main results and ablation studies on SemanticKITTI [1]
public validation set.

Method Backbone semantic labels motion states

baseline
SPVCNN [7]

60.8±0.2 86.4±0.1

Ours 66.5±0.1 90.2±0.1

baseline
SparseConv [5]

59.9±0.3 86.5±0.1

Ours 66.2±0.2 91.2±0.1

baseline
MinkUNet [3]

59.4±0.2 85.4±0.3

Ours 66.4±0.1 90.1±0.1

Table 5. Results for semantic labels and motion states on public
validation set of SemanticKITTI.

attained a mean Intersection over Union (mIoU) score of
66.0% on semantic categories.

In this study, our main results are based on the analysis of
three point cloud frames. To investigate the impact of tem-
poral information, we also explore different frame numbers,
including training without any temporal information (i.e.,
single frame). Our findings, presented in Table 6, consis-
tently demonstrate that models trained with multiple frames
outperform those trained with only a single frame. More-
over, our results also indicate that the performance of mod-
els trained with multiple frames increases with the number
of frames used for training.
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