
Supplementary Material of Marching-Primitives:
Shape Abstraction from Signed Distance Function

Weixiao Liu1,2 Yuwei Wu1 Sipu Ruan1 Gregory S. Chirikjian1

1National University of Singapore 2Johns Hopkins University
{mpewxl, yw.wu, ruansp, mpegre}@nus.edu.sg

Abstract

In this supplementary material, we provide the details
about the derivations, discussions and experiment settings.
In Sec. 1, we provide the detailed derivation of the ap-
proximation of the SDF of a superquadric. In Sec. 2, the
primitive initialization strategy in the connectivity march-
ing step is detailed. In Sec. 3, we provide the derivation
of the probabilistic primitive marching step. Furthermore,
Sec. 4 elaborates the fail-safe primitive removal criterion.
The overview of the Marching-Primitive algorithm is sum-
marized into pseudo-code in Sec. 5. Finally, in Sec. 6, we
detail the experiment implementation and show more qual-
itative examples.

1. Approximation of superquadric SDF
Recall the signed radial distance of a point xi to a

general-posed superquadric in Eq. (2) of the paper

dθ(xi) =
(
1− f− ϵ1

2 (g−1 ◦ xi)
)
∥g−1 ◦ xi∥2 (1)

The derivation is as follows (with an illustration shown in
Fig.1). The radial distance of a point xi to the surface of a
superquadric is defined as

∥xi − qi∥2 (2)

qi is where the vector from the center of the superquadric
frame to xi intersects the surface. Therefore, when viewed
from the superquadric frame g, the vectors g−1 ◦ qi and
g−1 ◦ xi are colinear, i.e.

g−1 ◦ qi = α(g−1 ◦ xi), where α ∈ R (3)

Note that g−1 ◦qi lies on the surface of superquadric. Thus,
substituting it into the implicit equation of the superquadric
(Eq. (1) in the paper), we obtain

α = f− ϵ1
2 (g−1 ◦ xi) (4)

Therefore,

∥xi − qi∥2 =∥g−1 ◦ xi − g−1 ◦ qi∥2
=∥(1− α)g−1 ◦ xi∥2

(5)

Considering the inside/outside of xi relative to the su-
perquadric surface, the signed radial distance is thus Eq.(1).

Figure 1. Signed distance approximated by signed radial distance.

2. Primitive Initialization
In Sec. 3.1 of the paper, the geometric primitive is ini-

tialized as an ellipsoid for each volume of interest (VOIs)
detected in the target SDF. This is achieved by first finding
out the smallest bounding-box encompassing the connected
voxels that form each of the VOI. For example, the lengths
of a bounding-box are lx, lx and lz , and the centroid locates
at xc. Ideally, the primitive is initialized as an ellipsoid
centered at xc with scales proportional to the lengths cor-
respondingly. Recall that a superquadric θ is parameterized
by

θ = {ϵ1, ϵ2, ax, ay, az,R, t} (6)

Then, the initialized ellipsoid is a special case of the su-
perquadrics

θinit = {1, 1, γlx, γly, γlz, I,xc} (7)



Figure 2. Visualizations of concepts. (a) Blue dots indicate the
detected VOI. (b) The smallest bounding-box encompassing the
VOI. (c) Initialization of the primitive as an ellipsoid. (d) The
final marched superquadric capturing the local geometry.

where γ is the initial scale ratio, I is the identity rotation ma-
trix. However, if the VOI is nonconvex, the centroid might
lie in the exterior space. In this situation, it has the risk of
activating the auto-degeneration mechanism. Therefore, in-
stead of t = xc, we constrain the initial location t within
the interior of the target shape:

t = argmin
xi∈V,d(xi)≤0

∥xi − xc∥2 (8)

where V is the current set of voxel points, d(xi) is the tar-
get signed distance evaluated at voxel point xi. θinit works
as the initial input to the subsequent probabilistic primitive
marching step. The concepts are visualized in Fig.2 for bet-
ter understanding.

3. Derivation of the Probabilistic Marching
In this section, we provide the detailed derivation of the

probabilistic primitive marching in Sec. 3.4 of the paper.
Based on the probabilistic model p

(
d(xi)|θk, zik

)
(Eq.8 in

the paper), the likelihood of the superquadric parameter θk

and variance σ2 given the target SDF is

L(θk, σ
2) =

∏
xi∈V

p(d(xi), zik|θk)

=
∏

xi∈V

p
(
d(xi)|θk, zik

)
p(zik|θk)

=
∏

xi∈V

p0(xi)
1−zikN

(
di|dθk

(xi), σ
2
)zikp(zik)

(9)

where
p0(xi) =

1di∈[−t,0)

t
di

.
= d(xi) (10)

and p(zik) is the prior probability of the correspondence
between the ith voxel point and the kth primitive, which is

independent of θk, i.e. p(zik|θk) = p(zik). As discussed
in the paper, we assume that zik is subjected to a Bernoulli
prior distribution B(p0), i.e. p(zik = 1) = p0. The defini-
tions of other variables can be found in the paper. Our goal
is to find the optimal θk and σ2 that maximize the likelihood
function. This is equivalent to minimizing the negative log-
likelihood

l(θk, σ
2) =− logL(θk, σ

2)

=−
∑
xi∈V

log

[
p(zik)p0(xi)

1−zikc(σ2)zik

exp

(
− 1

2

(d(xi)− dθk
(xi)

σ

)2
)zik

]

=
∑
xi∈V

[
zik
2

(d(xi)− dθk
(xi)

σ

)2

− log p(zik)

− zik log c(σ
2)− (1− zik) log p0(xi)

]
(11)

where c(σ2) = (2πσ2)−
1
2 is the normalizing coefficient of

the Gaussian distribution. By ignoring the terms indepen-
dent of θk and σ2, it is equivalent to minimize

l′(θk, σ
2) =

∑
xi∈V

zik

[(
d(xi)− dθk

(xi)
)2

2σ2
− log c(σ2)

]
(12)

Unlike d(xi) which is observed from the target signed dis-
tance, the correspondence zik is a latent variable that can-
not be observed. Therefore, it is intractable to solve Eq.12
directly. Our algorithm solves the problem in a two-step
expectation-maximization fashion. That is, zik is replaced
with

Pik
.
= E

(
zik|θk, d(xi)

)
= p

(
zik = 1|θk, d(xi)

)
(13)

Eq.13 is the conditional expectation of zik given the current
estimation of θk and the target SDF, whose value can be cal-
culated by Eq.9 in the paper. Subsequently, we derive that
the minimization of Eq.12 is equivalent to Eq.10 in the pa-
per, where we use an adaptive activation subset Va instead
of the whole voxel space V to boost performance. After we
obtain the updated primitive estimation θk, the variance σ2

of the Gaussian distribution can be updated in closed form
by solving

∂l′

∂σ2
= 0

⇔
∑

xi∈Va

Pik

[(
d(xi)− dθk

(xi)
)2 − σ2

2σ4

]
= 0

⇔ σ2 =

∑
xi∈Va

Pik

(
d(xi)− dθk

(xi)
)2∑

xi∈Va
Pik

(14)



4. Primitive Removal Criterion
In this section, we detail the fail-safe primitive removal

criterion introduced in Sec. 3.5 in the paper. Our method
counts the number of positive (exterior), negative (interior),
and inactive voxels encompassed by the recovered primi-
tive, which we denote as N+, N− and N0, respectively. The
inactive voxels are those already fitted by recovered primi-
tives, which is defined by Eq.7 in the paper. Our algorithm
removes the primitive from the representation if

N− < 1 or
N+

N+ +N− +N0
≥ 0.5 (15)

The first criterion removes the auto-degenerated primitive
that shrinks to a point. The second one is a fail-safe check-
ing criterion, which removes the primitive that significantly
contradicts the target SDF.

5. Overview of the Algorithm
In this section, we briefly summarize the Marching-

Primitives algorithm into a pseudo-code (Algorithm.1) to
give an overview of the structure. Note that V− in the fourth
row indicates the sets of voxels with negative signed dis-
tance, i.e. interior of the shape. The Marching-Primitives
can be roughly separated into 2 parts. Firstly, it marches
on the signed distance domain (row 5-15) to find VOIs by
analysing the connectivity. Then for each VOI, the algo-
rithm continues to march on the voxelized space domain
(row 16-24) to grow a primitive capturing the local geome-
try of the VOI. The algorithm terminates when all the inte-
rior volumes are well captured by the primitive representa-
tion Θ.

6. Implementation and Additional Results
6.1. Metrics

In this section, we provide details on the two metrics
used to evaluate the experiments.

Chamfer L1-distance: The common Chamfer
L1-distance is defined as follows:

Dchamfer (X,Y) =
1

M

∑
yj∈Y

min
xi∈X

∥yj − xi∥1 +

1

N

∑
xi∈X

min
yj∈Y

∥xi − yj∥1
(16)

where X = {xi} denotes the points sampled from the pre-
dicted model, Y = {yj} denotes the points sampled from
the original model, and N and M is the number of points
of the sets X and Y, respectively. For D-FAUST dataset, it
provides a dense point cloud for each human model, which
we take as Y. ShapeNet, on the other hand, does not pro-
vide point cloud representation for the object. So, we need

Algorithm 1 Marching-Primitives

1: Input: voxel set V, with target SDF d(·)
2: Output: primitive set Θ
3: Θ← {}
4: while V− ̸= ∅ do
5: generate marching sequence T c ▷ Eq.4 in paper
6: for tcm in T c do
7: if tcm > termination threshold then
8: return Θ
9: else

10: calculate VOIs S̄m ▷ Eq.6 in paper
11: if S̄m ̸= ∅ then
12: break for
13: end if
14: end if
15: end for
16: for Sk in S̄m do
17: initialize primitive θinit

k ▷ Eq.2 in supplement
18: while not converged do
19: march correspondence Pik ▷ Eq.9 in paper
20: update primitive θk ▷ Eq.10 in paper
21: end while
22: θk → Θ if θk valid ▷ Eq.10 in supplement
23: V = V − {xi, d(xi) ≤ 0 ∧ dθk

(xi) ≤ 0}
24: end for
25: end while
26: return Θ

to sample points densely on each face of the original mesh.
To obtain X, we apply the equal-distance sampling strat-
egy [1] on each superquadric surface θk ∈ Θ of the pre-
dicted model to get a point set Γk. However, some points
from Γk might lie inside of another superquadric θl, l ̸= k,
i.e., those points are on the inside of the 3D model. There-
fore, we need to remove those interior points by forming a
subset Γ̃k ⊂ Γk,

Γ̃k = {γk
i | γk

i ∈ Γk, f(γ
k
i ,θl) ≥ 0,∀θl ∈ Θ} (17)

where f(.) denotes the inside-outside function of the su-
perquadric. By taking the union of all the point sets
{Γ̃1, Γ̃2, ..., Γ̃K}, we obtain a point cloud representation
for the predicted model, which we treat as X. For both
ShapeNet and D-FAUST, we further downsample X and
Y to 50K-60K points for calculating the Chamfer distance.
The first term of Eq.16 computes how far on average the
closest point of the predicted model is to the original mesh,
and the second term calculates how far on average the clos-
est point of the original mesh is to the predicted model.
Thus, a lower value of Chamfer distance implies a better
abstraction accuracy in terms of surface fitness.

Intersection over Union (IoU): The definition of IoU is



shown as follows:

IoU =
V (Spred ∩ Soriginal)

V (Spred ∪ Soriginal)
, (18)

where Spred is the predicted primitive-based model obtained
by our algorithm, Soriginal is the original mesh model, and
V (.) computes the volume. It is difficult, if not impossi-
ble, to obtain the volume of the intersection or union of
two models. Therefore, we approximate the volume with
the Monte Carlo method. Firstly, we sample a set of points
Φ uniformly with a predefined density inside the bounding
box of Spred ∪ Soriginal. We use 1003 points for ShapeNet
and 643 points for DFAUST. The number is far more than
the previous papers, expecting a more accurate evaluation.
Then, for each point x ∈ Φ, we check if it is inside of the
original mesh and the predicted model, respectively. We
approximate V (Spred ∩ Soriginal) to be the number of points
that are on the inside of both Soriginal and Spred, and approx-
imate V (Spred ∪ Soriginal) with the number of points that are
on the inside of either Soriginal or Spred. If two models match
perfectly, the IoU will be 1 and if two models disjoint from
each other, the IoU is 0.

6.2. Implementation Details

In this section, we elaborate on the parameters imple-
mented in the experiment. All the experiments use the set-
tings provided as follows, if not specified in the experiment
section in the paper. The truncation threshold for the target
and source SDF is 1.3 times the input grid interval. In the
connectivity marching step, the common ratio of the geo-
metric sequence α is 4/5; The minimum size of the valid
connected volume Nc = 5; The primitive initial scale ra-
tio γ = 0.1; The terminating marching threshold is 0.01
times the negative truncation threshold. For the probabilis-
tic model, the parameter of the Bernoulli prior distribution
is set as p0 = 0.01; The variance σ2 is initialized as the trun-
cation threshold. During the primitive update step, we set
the activation distance a as 3.5 times the truncation thresh-
old. The source code of our algorithm is implemented in
MATLAB. The experiments are conducted on a computer
running Intel Core i9-9900K CPU. The baseline method
SQ [2] is trained and tested on an NVIDIA RTX3090 GPU.

All the methods consume different types of input. We
use the official codes and configurations of [2, 3]. For
SQs, occupancy grids of resolution 323 are generated from
meshes by the provided code. We had to and tried to modify
their network to consume occupancy grids of 1283. Rel-
atively incremental improvement is observed (e.g., chair
IoU 0.30 → 0.34). Therefore, we used the original net-
work and followed the official configuration for consistency
with the previous literature. We use 1000 and 200 points
from objects and each superquadric for the loss function,
respectively. For NB, we densely sample points from mesh

Figure 3. Shape abstraction results with the number of parts. Re-
covered primitives are colored in different colors.

and uniformly downsample to around 3500 (ShapeNet) and
5500 (DFAUST) points and set the number of initial com-
ponents K = 30 following the settings in [3].

6.3. Number of Parts

The number of parts used is not and cannot be predefined
in all the methods. SQs [2] has a hyper-parameter to limit
the maximum number set to 20. The training is unsuper-
vised, and the network learns to predict the number of com-
ponents. NB [3] infers the number via the Chinese Restau-
rant Process, splitting/merging when probabilistically nec-
essary with no limits. Our method grows parts as needed.
Since there is no ground truth and shapes vary greatly even
in the same category, it is hard to quantify the correct num-
ber, which makes statistics less meaningful. Our result is
satisfying qualitatively as shown in Fig.3. Our method can
successfully separate different parts if they possess differ-
ent geometric semantics (e.g. telling apart cuboids, cylin-
ders, and balls). Therefore, it is semantically interpretable.
In many cases (e.g., Fig.3), the segmentation coincides with
the human-defined semantics, though not trained to.

6.4. Time Performance

The proposed method (MPS) has an average runtime of
6.7s on ShapeNet and 2.5s on DFAUST per item. Time
varies on the complexity of objects and grid resolutions. For
an intuitive example, the chair, table, and human in Fig.3
take 3.9s, 3.6s, and 2.8s, respectively. The complex Read-
ing Room takes 146s for resolution 4003 and 30s for 2003.

6.5. Additional Results

Due to the limited length of the paper, in this Supplemen-
tation Material, we prepare more qualitative comparisons



Figure 4. Shape Abstraction results on airplanes. From left to right: SQs, Non-parametric Bayesian (NB), Marching-Primitives with
ellipsoids (MPE), Marching-Primitives with superquadrics (MPS), and the ground truth (pre-processed watertight mesh).

Figure 5. Shape Abstraction results on chairs. From left to right: SQs, Non-parametric Bayesian (NB), Marching-Primitives with ellipsoids
(MPE), Marching-Primitives with superquadrics (MPS), and the ground truth (pre-processed watertight mesh).

on the ShapeNet dataset. From the additional results, we
further demonstrate that our method is able to achieve high
accuracy shape abstraction. Our method not only well cap-

tures the geometry of different objects in a same category,
but also is generalizable among various categories without
the need of fine-tuning.



Figure 6. Shape Abstraction results on benches and sofas. From left to right: SQs, Non-parametric Bayesian (NB), Marching-Primitives
with ellipsoids (MPE), Marching-Primitives with superquadrics (MPS), and the ground truth (pre-processed watertight mesh).

Figure 7. Shape Abstraction results on tables. From left to right: SQs, Non-parametric Bayesian (NB), Marching-Primitives with ellipsoids
(MPE), Marching-Primitives with superquadrics (MPS), and the ground truth (pre-processed watertight mesh).



Figure 8. Shape Abstraction results on lamps. From left to right: SQs, Non-parametric Bayesian (NB), Marching-Primitives with ellipsoids
(MPE), Marching-Primitives with superquadrics (MPS), and the ground truth (pre-processed watertight mesh).

Figure 9. Shape Abstraction results on bottles, phones and cabinets. From left to right: SQs, Non-parametric Bayesian (NB), Marching-
Primitives with ellipsoids (MPE), Marching-Primitives with superquadrics (MPS), and the ground truth.



Figure 10. Shape Abstraction results on speakers, water-crafts, mailboxes and rifles. From left to right: SQs, Non-parametric Bayesian
(NB), Marching-Primitives with ellipsoids (MPE), Marching-Primitives with superquadrics (MPS), and the ground truth.

References
[1] W. Liu, Y. Wu, S. Ruan, and G. S. Chirikjian. Robust and

accurate superquadric recovery: A probabilistic approach. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition (CVPR), pages 2676–2685, June
2022. 3

[2] D. Paschalidou, A. O. Ulusoy, and A. Geiger. Superquadrics
revisited: Learning 3D shape parsing beyond cuboids. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), June 2019. 4

[3] Y. Wu, W. Liu, S. Ruan, and G. S. Chirikjian. Primitive-based
shape abstraction via nonparametric bayesian inference. In
Proceedings of the European Conference on Computer Vision
(ECCV), pages 479–495. Springer Nature Switzerland, 2022.
4


	. Approximation of superquadric SDF
	. Primitive Initialization
	. Derivation of the Probabilistic Marching
	. Primitive Removal Criterion
	. Overview of the Algorithm
	. Implementation and Additional Results
	. Metrics
	. Implementation Details
	. Number of Parts
	. Time Performance
	. Additional Results


