
Appendix for “Multiple Instance Learning via Iterative Self-Paced Supervised

Contrastive Learning”

The appendix is organized as follows:

• In Appendix A, we include additional descriptions of the datasets (Appendix A.1), implementation details (Appendix A.2)
and instructions on how to transform the Camelyon16 dataset for the additional experiments (Appendix A.4). In Ap-
pendix A.3, we describe the hyperparameter selection process and report results from an ablation study on the Camelyon16
dataset to evaluate the sensitivity of our approach to the choice of hyperparameters. In Appendix A.5, we provide a detailed
description of the ablated versions of ItS2CLR and CE finetuning from Section 4.3.

• In Appendix B, we include additional results. In Appendix B.1, we report pseudo label accuracy measured by additional
metrics between ItS2CLR and the ablated versions. In Appendix B.2, we show additional results for instance-level per-
formance. In Appendix B.3, we report additional comparisons with end-to-end methods. In Appendix B.4, we provide
additional examples of tumor localization maps.

• In Appendix C, we provide the formulation and implementation details for the different MIL aggregators used in our study.

A. Experiments

A.1. Dataset

Camelyon16 Camelyon16 is a public dataset for detection of metastasis in breast cancer. This dataset consists of 271
training and 129 test whole slide images (WSI). All the images (including both training and test) are divided into 0.25 million
patches at 5× magnification. On average, each slide contains approximately 625 patches 5× magnification respectively. Each
WSI is paired with pixel-level annotations indicating the position of tumors (if any are present). We ignore the pixel-level
annotations during training and consider only slide-level labels (i.e. the slide is considered positive if it contains any annotated
tumor regions). As a result, positive bags contain patches with tumors and patches with healthy tissue. Negative bags contain
only patches with healthy tissue. The ratio between positive and negative patches in this dataset is highly imbalanced. Only
a small fraction of patches in the positive slides contain tumors (less than 10%).

TCGA-LUAD TCGA for Lung Adenocarcinoma (LUAD) is a subset of TCGA (The Cancer Genome Atlas), a landmark
cancer genomics program. It consists of 800 tumorous frozen whole-slide histopathology images and the corresponding
genetic mutation status. Each WSI is paired with a single binary label indicating whether each gene is mutated or wild type.
In this experiment, we build MIL models to detect four mutations - EGFR, KRAS, STK11, and TP53, which are sensitizing
mutations that can impact treatment options in LUAD [16, 23]. We split the data set randomly into training, validation and
test sets so that each patient will appear in only one of the subsets. After splitting the data, 477 images are in the training set,
96 images are in the validation set, and 227 images are in the test set.

Breast Ultrasound dataset The Breast Ultrasound Dataset includes 28,914 ultrasound exams [45]. An exam is labeled as
cancer-positive if there is a pathology-confirmed malignant finding associated with this exam. In this dataset, 5,593 exams
are cancer-positive. On average, each exam contains approximately 18 images. Patients in the dataset were randomly divided
into a training set (60%), a validation set (10%), and test set (30%). Each patient was included in only one of the three sets.
We show 5 example breast ultrasound images in Figure 4.

A.2. Implementation Details

All experiments were conducted on NVIDIA RTX8000 GPUs and NVIDIA V100 GPUs. For all models, we perform
model selection during training based on bag-level AUC evaluated on the validation set.

Camelyon16 We follow the same preprocessing and pretraining steps as [35]. To preprocess the slides, we cropped the
slides into tiles at 5x magnification, filtered out tiles that do not contain enough tissues (average saturation < 30), and resized
the images to a resolution of 224 ⇥ 224 pixels. Resizing was performed using the Pillow package [15] with default settings
(nearest neighbor sampling).

We pretrain the feature extractor, ResNet18 [28], with SimCLR [10] for a maximum of 600 epochs, at which we notice that
the training loss converges. Each patch is represented by a 512-dimensional vector. To evaluate the learned representation



Figure 4. Example breast ultrasound images. The first two images contain a benign lesion. The second and third contain a malignant
lesion. In all ultrasound images, the center object of the circular shape corresponds to the lesion of interest. The images are from different
exams.

on the down-stream task, we train a MIL aggregator based on instances representations and evaluate the bag-level prediction
every few epochs. We observe that the bag-level AUC on the downstream task in the validation set does not improve when
pretraining for a longer period. We set the batch size to 512 and temperature to 0.5. We use SGD with the learning rate of
0.03, weight decay of 0.0001, and cosine annealing scheduler.

During finetuning the feature extractor with Its2CLR, we finetune the feature extractor for a maximum of 50 epochs. We
choose the model that achieves the highest bag-level AUC on the downstream task in the validation set. The batch size is set
to 512, and the learning rate is set to 10�2. At the feature extractor training stage, we apply random data augmentation to
each instance, including:

• random (p = 0.8) color jittering: brightness, contrast, and saturation factors are uniformly sampled from [0.2, 1.8], hue
factor is uniformly sampled from [�0.2, 0.2].,

• random grayscale (p = 0.2),

• random Gaussian blur with a kernel size of 0.06 times the size of an image,

• random horizontal/vertical flipping with 0.5 probability.

When training the DS-MIL aggregator, we follow the settings in [35]. We use the Adam optimizer during training. Since
each bag may contain a different number of instances, we follow [35] and set the batch size to just one bag. We train each
model for a maximum of 350 epochs. We use an initial learning rate of 2 ⇥ 10�4, and use the StepLR scheduler to reduce
the learning rate by 0.5 every 75 epochs. Details on the hyperparameters used for training the aggregator are in Appendix C.

TCGA-LUAD To preprocess the slides, we cropped them into tiles at 10x magnification, filtered out the background tiles
that do not contain enough tissues (when the average saturation is less than 30), and resized the images into the resolution of
224 ⇥ 224 pixels. Resizing was performed using the Pillow package [15] with nearest neighbor sampling. These tiles were
color-normalized with the Vahadane method [47].

To train the feature extractor, we perform the same process as for Camelyon16.
We also use DS-MIL [35] as the aggregator. When training the aggregator, we resample the ratio of positive and negative

bags to keep the class ratio balanced. We train the aggregator for a maximum of 100 epochs using the Adam optimizer with
the learning rate set to 2⇥ 10�4 and divide the learning rate by 2 every 50 epochs.

Breast Ultrasound We follow the same preprocessing steps as [45]. All images were resized to 224 ⇥ 224 pixels using
bilinear interpolation. We used ResNet18 [28] as the feature extractor and pretrained it using SimCLR [10] for 100 epochs,
at which we notice that the training loss converges. We adopt the same pretraining and model selection approach as for
Camelyon16. We used the Instance Attention-MIL as an aggregator [29]. Given a bag of images x1, ..., xk and a feature
extractor f , the aggregator first computes instance-level predictions ŷi for each image xi. It then calculates an attention score
↵i 2 [0, 1] for each image xi using its feature vectors f(xi). Lastly, the bag-level prediction is computed as the average
instance prediction weighted by the attention score ŷ =

P
k

i
↵iŷi. To optimize the aggregator, we trained it using Adam with

a learning rate set to 10�3 for a maximum of 350 epochs. The model is selected according to the best bag-level AUC on the
validation set.



Figure 5. Illustration of our partitioning of the instances from positive bags in Section 3.2 based on the predicted probability of the instance
classifier in ItS2CLR. Top: X+

pos and X�
pos are partitioned according to the thresholding parameter ⌘. Bottom: The distribution of instance

scores for instances with negative pseudo labels (left) and negative pseudo labels (right). A threshold r is symmetrically applied on both
distributions so that the top r% instances with the lowest and highest scores are treated as confidently negative or positive, respectively.
We use X�

pos(r) and X+
pos(r) to denote the set of instances that are deemed truly negative and positive respectively. During training, as the

accuracy of the pseudo labels improves, we can increase r to incorporate more samples in these sets.

A.3. Hyperparameters for Training the Feature Extractor in ItS2CLR

Hyperparameter tuning The hyperparameters of the proposed method include: the learning rate lr 2 [1⇥10�5
, 1⇥10�3],

the initial threshold used for binarization of the prediction to produce pseudo labels ⌘ 2 [0.1, 0.9], the proportion of sampled
positive anchors p+ 2 [0.05, 0.5], the initial value r0 2 [0.01, 0.7] and the terminal value rT 2 [0.2, 0.8] of the percentage
of selected instances r in the self-paced sampling scheme. For Camelyon16, we obtain the highest bag-level validation AUC
using the following hyperparameters: ⌘ = 0.3, p+ = 0.2, r0 = 0.2 and rT = 0.8. We use the feature extractor trained under
these settings in Tables 2, 3 and 4. The complete list of hyperparameters in our experiments is reported in Table 8.

Table 8. ItS2CLR hyperparameters used in our experiments.

Camelyon16 Breast TCGA-LUAD mutation
Ultrasound EGFR KRAS STK11 TP53

⌘ 0.3 0.3 0.3 0.5 0.3 0.5
r0 0.2 0.2 0.2 0.2 0.2 0.2
rT 0.8 0.8 0.8 0.8 0.8 0.8
p+ 0.2 0.2 0.5 0.2 0.2 0.2

Sensitivity analysis We conduct a sensitivity analysis for each hyperparameter on Camelyon 16, and observe a robust
performance over a range of hyperparameter values.



0.1 0.2 0.3 0.4 0.5 0.8
�

1.00

0.95

0.90

0.85

B
ag

A
U

C

0.010.05 0.20 0.50
p+

1.00

0.95

0.90

0.85

B
ag

A
U

C

Figure 6. Sensitivity analysis for the threshold ⌘ and the ratio of positive pseudo labels used as anchor images p+ on the Camelyon16
dataset.

0.2 0.5 0.7
r0, given rT = 0.8

1.00

0.95

0.90

0.85

B
ag

A
U

C

0.3 0.5 0.8
rT , given r0 = 0.2

0.95

0.90

1.00

B
ag

A
U

C

Figure 7. Sensitivity analysis for the hyperparameters r0 and rT of the proposed self-paced learning scheme on Camelyon16.

• Threshold ⌘: The choice of ⌘ influences the instance-level pseudo labels. As shown in Figure 5, the outputs of the instance-
level classifier are mostly close to 0 or 1, so the pseudo labels do not dramatically vary for a wide range of ⌘. We analyze
the importance of ⌘. The left panel of Figure 6 shows that ItS2CLR is quite robust to the value of ⌘, except for extreme
values. If ⌘ is too small (e.g. 0.1), it can introduce a significant number of false positives. If ⌘ is too large (e.g. 0.8), it
can mistakenly exclude some useful positive samples, causing a drop in the performance. In the main paper, since negative
instances are more prevalent than positive instances, a threshold of 0.3 (less than 0.5) can increase the recall for the positive
instances.

• Sampling ratio of anchor instance over pseudo labels: We use p+ to denote the percentage of positive anchor instances
sampled during the contrastive learning stage. The right panel of Figure 6 shows that it is desirable to choose a relatively
small p+. Since there are far fewer positive instances than negative instance, keeping the ratio of positive anchors low can
avoid repetitively sampling from a limited number of positive instances. Also, since the instance pseudo labels X�

neg must
be correct by the definition of negative bags, the negative instance pseudo labels are more accurate than the positive ones.

• The initial rate r0 and final rate rT for the self-paced sampling scheduler: Figure 7 shows that ItS2CLR is also generally
robust to the values of r0 and rT . However, an extremely large initial rate r0 (high confidence in the pseudo labels) may
introduce more samples with incorrect labels during training and hurt the performance. Conversely, extremely small rT
(low confidence in the pseudo labels) may hinder the model from using more data, also hurting performance.

• Sampling during warm-up: During the warmup phase, we sample anchor instances from X�
neg. An alternative choice can be

sampling the anchor instance from X+
pos and the corresponding set Dx from X�

neg. However, our experiments show that the
resulting bag-level AUC drops to 90.91 under this setting, which is significantly lower than 94.25 by the proposed method.
This comparison demonstrates the importance of using clean negative instances as anchor images during warmup.



A.4. Experiments on Synthetic Versions of Camelyon16

Simulation of witness rates (WR)

Since the ground truth instance-level labels are available for Camelyon16, we can conduct controlled experiments on
synthetic versions of the dataset. We manipulate the prevalence of positive instances in the bag (the witness rate) and study
its impact on the performance of the proposed approach and the baselines, as reported in Section 2. To increase the witness
rate, we randomly drop the negative instances at a fixed ratio in each bag; to reduce the witness rate, we randomly drop the
positive instances at a fixed ratio in each bag. The percentage of retained instances and the resulting witness rates are reported
in Table 6.

Downsampled version of Camelyon16 for end-to-end training

In order to enable end-to-end training, we downsample each bag in Camelyon16 to around 500 instances so that it fits in
the memory of a GPU. To achieve this, we divide large bags which have more than 500 instances into smaller bags.

For negative bags, we randomly partition the instances within the original bag into same-sized sub-bags with around 500
instances.

For positive bags, we randomly partition the positive instances within the original bag into the desired number of sub-
bags. We adjust the number of sub-bags so that it cannot be less than the number of positive instances. We then combine the
positive instances and the negative instances to form sub-bags. This ensures that the bag-level label is correct and the witness
rate for each positive sub-bag remains similar to the original bag.

A.5. Description of the ablation study

Details for CE finetuning with/without iterative updating

• CE without iterative updating: we use the same initial pseudo labels and pretrained representations as our ItS2CLR frame-
work. Concretely, we label all the instances in negative bags as negative. We label the instances in positive bags using the
instance prediction obtained from the aggregator. When finetuning the aggregator, the pseudo labels are kept fixed.

• CE + iterative updating: based on CE with iterative updating, the pseudo labels are updated every few epochs, which is in
turn used to guide the finetuning of the feature extractors.

Details for ItS2CLR with/without SPL

• ItS2CLR without iterative updating: we keep everything the same as the full Its2CLR procedure (including the SPL strat-
egy), but we do not apply steps 7, 8 and 9 in Algorithm 1. As a result, the pseudo labels are fixed to the initial set of pseudo
labels.

• ItS2CLR without SPL: we keep everything the same as the full Its2CLR procedure (including iterative updating), but modify
step 10 in Algorithm 1. We do not utilize the pseudo label to train the model in a self-paced learning way as in Section 3.2.
We utilize all the pseudo-labeled data from the beginning of the finetuning.

B. Additional Results

B.1. Learning Curves

F1-Score plot corresponding to Figure 1: In Figure 8, we show the max F1 score curve corresponding to the right side of
Figure 1. This plot confirms the importance of self-paced learning and iterative updating in ItS2CLR.

Instance-level AUC during training comparison with cross-entropy finetuning: Figure 9 compares ItS2CLR with an al-
ternative approach that finetunes the feature extractor using cross-entropy (CE) loss on the Camelyon16 dataset. Without
iterative updating, CE finetuning rapidly overfits to the incorrect labels. Iterative updating prevents this to some extent but
does not match the performance of ItS2CLR, which produces increasingly accurate pseudo labels as the iterations proceed.

B.2. Instance-level Evaluation

In order to evaluate instance-level performance, we report values of classification metrics including AUC, F1-score,
AUPRC and Dice score for localization.

The Dice score is defined as follows:

Dice =
2
P

i
yipiP

i
yi +

P
i
pi
, (4)



Figure 8. Comparison of max F1 score on instance pseudo labels. ItS2CLR updates the features iteratively based on a subset of the pseudo
labels that are selected according to the self-paced learning (SPL) strategy. On Camelyon16, this gradually improves the accuracy of the
pseudo labels in terms of instance-level max F1 score. Both the iterative updates and SPL are important to achieve this.

Figure 9. Comparison of instance-level AUC during training between ItS2CLR and an alternative approach that finetunes the feature
extractor using cross-entropy (CE) loss on the Camelyon16 dataset. Iterative updating improves performance for CE finetuning, but
ItS2CLR produces more accurate pseudo labels.

where yi and pi are the ground truth and predicted probability for the ith sample. The predicted probability is computed from
the output of the MIL model si via linear scaling:

pi = � (asi + b) , (5)

where a 2 [�5, 5] and b 2 [0.1, 10] are chosen to maximize the Dice score on the validation set.



Figure 10. The precision and recall of pseudo labels from the selected instances during fine-tuning. The proposed ItS2CLR approach
achieves high precision in generating pseudo labels from selected instances during fine-tuning through self-paced sampling. Since instance-
level AUC improves during training (as shown in Fig 1), gradually including more instance candidates leads to higher recall while main-
taining significant precision.

Table 9. Comparison of instance-level performance for the models in Table 3, using a max pooling aggregator.

(⇥10�2) SimCLR Ground-truth
finetuning

CE finetuning ItS2CLR
(CSSL) w/o iter. iter. w/o both w/o iter. w/o SPL Full

AUC 91.53 97.58 93.17 94.48 92.69 94.55 94.43 96.25

F1-score 78.45 88.24 85.26 85.83 86.77 86.05 87.52 86.75
AUPRC 79.94 85.50 85.79 86.73 85.50 84.54 86.80 89.99

Dice 31.21 63.01 43.90 44.76 46.57 55.30 52.55 57.82

Table 10. Comparison of instance-level performance for the models in Table 3, using a linear classifier trained on the frozen features
produced by each model. In addition, we produce bag-level predictions using the maximum output of the linear classifier for each bag.

(⇥10�2) SimCLR Ground-truth
finetuning

CE finetuning ItS2CLR
Instance-level (CSSL) w/o iter. iter. w/o both w/o iter. w/o SPL Full

AUC 96.13 97.56 96.94 96.88 96.64 97.25 96.92 97.27

F1-score 85.29 87.69 87.34 86.94 86.00 87.07 87.6 87.92

AUPRC 82.65 85.94 79.96 78.02 78.17 84.56 77.90 82.09
Dice 49.56 61.39 55.40 54.66 51.85 54.87 55.11 60.13

Bag-level (max-pooling)

AUC 86.25 97.37 87.53 90.54 89.97 93.09 92.81 97.47

Max pooling aggregator: In Table 4, we show that our model achieves better weakly supervised localization performance
compared to other methods when DS-MIL is used as the aggregator. In Table 9, we show that the same conclusion holds for
an aggregator based on max-pooling.

Linear evaluation: In Table 10, we report results obtained by training a logistic regression model using the features
obtained from the same approaches in Table 4, following a standard linear evaluation pipeline in representation learning [10].
ItS2CLR again achieves the best instance-level performance. We also produce bag-level predictions using the maximum
output of the linear classifier for each bag, which again showcases that better instance-level performance results in superior
bag-level classification.



Figure 11. Comparison between end-to-end training and two-stage training on the downsampled version of the Camelyon16 dataset. End-
to-end models overfit rapidly. Note that the unit of the training iterations here is 1k.

Table 11. Results on the downsampled version of the Camelyon16 dataset.

End-to-end
(scratch)

End-to-end
(SimCLR)

SimCLR +
DS-MIL ItS2CLR

Bag AUC 64.52 66.71 80.96 88.65

Instance AUC 78.32 81.29 93.94 95.58

Instance F-score 51.02 55.71 85.93 87.01

Table 12. Results on the Breast Ultrasound dataset.

SimCLR + Aggregator End-to-end MIL ItS2CLR

Bag AUC 80.79 91.26 93.93

Bag AUPRC 34.63 58.73 70.30

Instance AUC 62.83 82.11 88.63

Instance AUPRC 10.58 31.31 43.71

B.3. Comparison with End-to-end Training

In this section, we provide additional results to complement Table 5, where ItS2CLR is compared to end-to-end models.
The end-to-end training is conducted with the same aggregators for each dataset as described in Section 4 and Appendix A.2.

Camelyon16 Figure 11 shows that an end-to-end model trained on the downsampled version of Camelyon16 described in
Section A.4 rapidly overfits when trained from scratch and from SimCLR-pretrained weights. The two-stage model, on the
other hand, is less prone to overfitting. Table 11 shows that the two-stage learning pipeline outperforms end-to-end training,
and is in turn outperformed by ItS2CLR.

Breast Ultrasound dataset Table 12 shows that end-to-end training outperforms the SimCLR+Aggregator baseline for
the breast-ultrasound dataset, but is outperformed by ItS2CLR.

B.4. Tumor Localization Maps

Figure 12 provides additional tumor localization maps.



Dice 0.906 Dice 0.960

Dice 0.922 Dice 0.974

Dice 0.060 Dice 0.341

Dice 0.092 Dice 0.528

SimCLR + DS-MIL ItS2CLRInstance-level ground truth

Figure 12. Additional tumor localization maps for histopathology slides from the Camelyon16 test set. Instance-level predictions are
generated by the instance-level classifier of the DS-MIL trained on extracted instance-level features.

C. MIL Aggregators

C.1. Formulation of MIL Aggregators

In this section, we describe the different MIL aggregators benchmarked in Section 4.2 and Table 3.



Let B denote a collection of sets of feature vectors in Rd. The bags of extracted features in the dataset are denoted by
{Hb}Bb=1 ⇢ B. An aggregator is defined as a function g : B ! [0, 1] mapping bags of extracted features to a score in [0, 1].

There exist two main approaches in MIL:

1. The instance-level approach: using a logistic classifier on each instance, then aggregating instance predictions over a
bag (e.g. max-pooling, top k-pooling).

2. The embedding-level approach: aggregating the instance embeddings, then obtaining a bag-level prediction via a bag-
level classifier (e.g. attention-based aggregator, Transformer).

We denote the embeddings of the instances within a bag by H = {hk}Kk=1, where K is the number of instances.
Max-pooling obtains bag-level predictions by taking the maximum of the instance-level predictions produced by a logistic

instance classifier �, that is

g�(H) = max
k=1,··· ,K

{�(hk)} . (6)

Top-k pooling [46] produces bag-level prediction using the mean of the top-M ranked instance-level predictions produced
by a logistic instance classifier �, where M is a hyperparameter.

Let topM (�, H) denote the indices of the elements in H for which � produces the highest M scores,

g�(H) =
1

M

X

k2topM(�,H)

�(hk). (7)

Attention-based MIL [29] aggregates instance embeddings using a sum weighted by attention weights. Then the bag-
level estimation is computed from the aggregated embeddings by a logistic bag-level classifier ':

g'(H) = '

 
KX

k=1

akhk

!
, (8)

where ak is the attention weight on instance k:

ak =
exp

�
w

T tanh(V h
T

k
)
�

P
K

j=1 exp
�
wT tanh(V h

T

j
)
� , (9)

where w 2 Rl⇥1 and V 2 Rl⇥d are learnable parameters and l is the dimension of the hidden layer.
DS-MIL combines instance-level and embedding-level aggregation, we refer to DS-MIL [35] for more details on this

approach.
Transformer [9] proposed an aggregation that uses an L-layer Transformer to process the set of instance features H . The

initial set H(0) is set equal to H . Then it goes through the Transformer as follows:

H
0(l) = MSA

⇣
H

(l�1)
⌘
+H

(l�1))

H
(l) = MLP

⇣
H

0(l�1)
⌘
+H

0(l�1)
(10)

for l = 1, · · · , L, where MSA is multiple-head self-attention, MLP is a multi-layer perceptron network. Then the processed
vectors H(l) are fed to Attention-based MIL [29] to obtain the bag-level predictions

g'(H
l) = '

 
KX

k=1

akh
l

k

!
. (11)

Here ak is the attention weight on instance k:

ak =
exp

�
w

T tanh(V (hl

k
)T )
�

P
K

j=1 exp
�
wT tanh(V (hl

j
)T )
� , (12)

where w 2 Rp⇥1 and V 2 Rp⇥d are learnable parameters and p is the dimension of the hidden layer.



C.2. Implementation Details

Top-k pooling We select the ratio in Top-k pooling from the set {0.1%, 1%, 3%, 10%, 20%}.
DS-MIL The weight between the two cross-entropy loss functions in DS-MIL is selected from the interval [0.1, 5] based

on the best validation performance.
Attention-based MIL. The hidden dimension of the attention module to compute the attention weights is set equal to the

dimension of the input feature vector (512).
Transformer. We add light-weighted two-layer Transformer blocks to process instance features. We did not observe

improvement in performance with additional blocks.


	. Introduction
	. CSSL May Not Learn Discriminative Representations In MIL
	. MIL via Iterative Self-paced Supervised Contrastive learning
	. Supervised contrastive learning with pseudo labels
	. Sampling via self-paced learning

	. Experiments
	. Datasets
	. Comparison with contrastive self-supervised learning
	. Comparison with alternative approaches
	. Improving different pretrained representations
	. Computational complexity

	. Related work
	. Conclusion
	. Experiments
	. Dataset
	. Implementation Details
	. Hyperparameters for Training the Feature Extractor in ItS2CLR
	. Experiments on Synthetic Versions of Camelyon16
	. Description of the ablation study

	. Additional Results
	. Learning Curves
	. Instance-level Evaluation
	. Comparison with End-to-end Training
	. Tumor Localization Maps

	. MIL Aggregators
	. Formulation of MIL Aggregators
	. Implementation Details


