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1. Overview
In the main paper, we introduce a novel UDF-based

volume rendering approach to achieve high-fidelity multi-
view reconstruction for arbitrary shapes with both open and
closed surfaces. This supplemental material consists of de-
tailed proofs, implementation details and additional results
of multi-view reconstruction. All the sections are organized
as follows:

• Section 2 analyzes the inherent bias in color rendering
of the naive UDF solution based on SDF renderer.

• Section 3 provides detailed proofs of the unbiased and
occlusion-aware properties of our proposed NeUDF.

• Section 4 provides implementation details on network
architecture (Section 4.1), training details (Section 4.2)
and data preparation (Section 4.3).

• Section 5 provides additional qualitative results of
multi-view reconstruction.

2. Bias in Naive UDF solution based on SDF
renderer

In this section we illustrate the bias of color rendering in-
troduced by the naive UDF solution based on SDF renderer,
which directly extends the weight of NeuS to UDF. The bias
causes inherent geometric error like redundant surfaces and
floating noises.

To apply the naive UDF solution based on the SDF ren-
derer of NeuS, we denote the rendered color C(o, v):

C(o, v) =

∫ +∞

0

wn(t)c(p(t), v)dt, (1)

where (o, v) are the origin and view direction of the sample
ray, c(x, v) the color at position x along the view direction
v, and wn(t) the rendering weight of NeuS:

wn(t) = ρs(t)e
−

∫ t
0
ρs(u)du (2)

ρs(t) = max{−
∂(Φs◦Ψ◦p)

∂t (t)

Φs ◦Ψ ◦ p(t)
, 0} (3)

where ρs(t) denotes the opaque density of NeuS, Φs(d) the
Sigmoid function, and Ψ(x) the UDF value at position x.
The learnable parameter s controls the distribution of the
Sigmoid function, which is expected to increase to infinity
during training.

Assume that the ray linearly crosses the open surface in
its local neighbor, e.g., there exists an interval (tl, tr), the
intersection point t∗ ∈ (tl, tr), which satisfies:

Ψ ◦ p(t) = |cos θ| · |t− t∗| ,∀t ∈ (tl, tr), (4)

where θ is the angle between the view direction and the sur-
face normal.

In UDF, the color C(o, v) rendered based on SDF ren-
derer, Equ. 1, consists of inherent bias and inconsistency of
the geometry. Denote the first intersection point t∗0 and its
corresponding interval (tl0, t

r
0), the bias can be formularized

as below:

lim
s→∞

C(o, v) = 0.5c(p(t∗0), v)+
2k − 1

2k+1
cm+

1

2k+1
cn, (5)

where k is the number of intersection points along the ray,
cm the undesired mixture of colors from invisible surfaces
and cn the colors from floating noise induced by the render-
ing bias. The parameter s decides the weight distribution
of colors along the ray, and is supposed to increase towards
infinity during training.
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Note that the weight distribution corresponding to Equ. 5
satisfies the local maximal constraint discussed in NeuS, i.e.
the weight attains local maxima at each intersection point
(locally unbiased). But the local maximal constraint is not
sufficient for an unbiased rendering for open surfaces due to
the volume-surface representation discrepancy. The volume
rendering relies on the volume-level color fusion for opti-
mization, while the ground-truth color is exactly the surface
color at the intersection point of the sample ray and the first
intersected surface. A self-consistent rendering procedure
should be able to address this volume-surface discrepancy,
i.e. the color fusion range should be limited as close to the
first intersection point as possible (globally unbiased). Oth-
erwise the network is not able to converge to a surface rep-
resentation through volume rendering. Note that the weight
of NeuS is globally and locally unbiased for SDF, but not
globally unbiased for UDF, and this difference comes from
the difference of the value domains of SDF and UDF.

To illustrate the detailed causation of cm and cn, we first
prove that:

lim
s→∞

∫ tl0

0

wn(t)dt = 0 (6)

lim
s→∞

∫ tr0

tl0

wn(t)dt = 0.5, (7)

which means that the output color consists of undesired bias
whose weight sums to 0.5, and the bias cannot be corrected
through training. Then we show the detailed distribution of
the bias cm and cn for corroboration.

Proof of Equ. 6. Specifically, to prove Equ. 6, we have:

∫ tl0

0

wn(t)dt

=

∫ tl0

0

ρs(t)e
−

∫ t
0
ρs(u)dudt

=

∫ tl0

0

− ∂

∂t
e−

∫ t
0
ρs(u)udt

=− e−
∫ t
0
ρs(u)du|t

l
0
0

=− e−
∫ tl0
0 ρs(u)du + 1

=− e−
∫ tl0
0 max{

∂(Φs◦Ψ◦p)
∂u

(u)

Φs◦Ψ◦p(u)
,0}du + 1

(8)

It follows that:

∫ tl0

0

wn(t)dt

⩽− e
−

∫ tl0
0

∣∣∣∣∣ ∂(Φs◦Ψ◦p)
∂u

(u)

Φs◦Ψ◦p(u)

∣∣∣∣∣du
+ 1

=− e
−

∫ tl0
0

∣∣∣∣∣
∂Φs◦Ψ◦p(u)

∂Ψ◦p(u)
· ∂Ψ◦p(u)

∂u
Φs◦Ψ◦p(u)

∣∣∣∣∣du
+ 1

=− e
−

∫ tl0
0

∣∣∣∣∣Φ′
s◦Ψ◦p(u)· ∂Ψ◦p(u)

∂u
Φs◦Ψ◦p(u)

∣∣∣∣∣du
+ 1

=− e−
∫ tl0
0

|Φ′
s◦Ψ◦p(u)|·| ∂Ψ◦p(u)

∂u |
|Φs◦Ψ◦p(u)| du + 1

(9)

Denote that:

A = |Φ′
s ◦Ψ ◦ p(u)| (10)

B =

∣∣∣∣∂Ψ ◦ p(u)
∂u

∣∣∣∣ (11)

C = |Φs ◦Ψ ◦ p(u)| (12)

We have:

∫ tl0

0

wn(t)dt = −e−
∫ tl0
0

A·B
C du + 1 (13)

Because t∗0 is the first zero point of Ψ ◦ p(t) and Ψ(x) is
a continuous function, there is:

∃Ψmin > 0, s.t.,Ψ ◦ p(t) > Ψmin,∀t ∈ (0, tl0).

Note that Φs(x) is the Sigmoid function Φs(x) = (1 +

e−s∗x)−1, and ∂Ψ◦p(u)
∂u is the gradient of the UDF along the

ray. We have:

C = |Φs ◦Ψ ◦ p(u)| (14)

= (1 + e−s·Ψ◦p(u))−1 (15)

> (1 + e−s·Ψmin)−1 (16)
> 0.5 (17)

B =

∣∣∣∣∂Ψ ◦ p(u)
∂u

∣∣∣∣ < 1 (18)

and ∀ϵ > 0,∃S = max{1, −4tl0
ln (1−ϵ)·Ψ2

min
}, s.t.,∀s > S,



there is:

A = |Φ′
s ◦Ψ ◦ p(u)|

=
s · e−s·Ψ◦p(t)

(1 + s · e−s·Ψ◦p(t))2

⩽
2

Ψ2 ◦ p(t) · s

⩽
2

Ψ2
min · s

⩽
2

Ψ2
min · −4tl0

ln (1−ϵ)·Ψ2
min

=
−0.5 ln (1− ϵ)

tl0

(19)

It follows that:

∫ tl0

0

wn(t)dt = −e−
∫ tl0
0

A·B
C du + 1

< −e−
∫ tl0
0

0.5 ln (1−ϵ)

tl0

·1

0.5 du + 1

= −e
−

∫ tl0
0

ln (1−ϵ)

tl0

du
+ 1

= −e
−tl0·

ln (1−ϵ)

tl0 + 1

= −eln (1−ϵ) + 1

= −(1− ϵ) + 1

= ϵ

(20)

This leads to:

lim
s→∞

∫ tl0

0

wn(t)dt

= lim
s→∞

(−e−
∫ tl0
0

A·B
C du + 1)

=0

(21)

The Equ. 21 means that the weight before the first inter-
section of the ray converges against zero during training, so
the output color composites no color before the first inter-
sected surface. This completes the proof of Equ. 6.

Proof of Equ. 7. Then we give the proof of Equ. 7. Same
as the derivation of Equ. 8, we have:∫ t∗0

tl0

wn(t)dt

=

∫ t∗0

t∗0

ρs(t)e
−

∫ t
0
ρs(u)dudt

=

∫ t∗0

tl
)

− ∂

∂t
e−

∫ t
0
ρs(u)udt

=− e−
∫ t
0
ρs(u)du|t

∗
0

tl0

=− e−
∫ t∗0
0 ρs(u)du + e−

∫ tl0
0 ρs(u)du

=− e
−

∫ tl0
0 ρs(u)du−

∫ t∗0
tl0

ρs(u)du
+ e−

∫ tl0
0 ρs(u)du

=e−
∫ tl0
0 ρs(u)du(−e

−
∫ t∗0
tl0

ρs(u)du
+ 1)

(22)

Note that when t ∈ (tl0, t
∗
0), we have:

∂Ψ ◦ p(t)
∂t

= − |cos θ| . (23)

It follows that:

− e
−

∫ t∗0
tl0

ρs(u)du
+ 1

=− e
−

∫ t∗0
tl0

max{
∂(Φs◦Ψ◦p)

∂u
(u)

Φs◦Ψ◦p(u)
,0}du

+ 1

=− e
−

∫ t∗0
tl0

∣∣∣∣∣ ∂(Φs◦Ψ◦p)
∂u

(u)

Φs◦Ψ◦p(u)

∣∣∣∣∣du
+ 1

=− e
−

∫ t∗0
tl0
| ∂
∂u ln Φs◦Ψ◦p(u)du|

+ 1

=− e
−

∫ t∗0
tl0

− ∂
∂u ln Φs◦Ψ◦p(u)du

+ 1

=− eln Φs◦Ψ◦p(t∗0)−ln Φs◦Ψ◦p(tl0) + 1

=− eln Φs◦Ψ◦p(t∗0)

eln Φs◦Ψ◦p(tl0)
+ 1

=− Φs ◦Ψ ◦ p(t∗0)
Φs ◦Ψ ◦ p(tl0)

+ 1

(24)

Since t∗0 is the intersection point, we have Ψ ◦ p(t∗0) = 0
and Φs ◦Ψ ◦ p(t∗0) = 0.5. It follows that:

− e
−

∫ t∗0
tl0

ρs(u)du
+ 1

=− Φs ◦Ψ ◦ p(t∗0)
Φs ◦Ψ ◦ p(tl0)

+ 1

=− 0.5

Φs ◦Ψ ◦ p(tl0)
+ 1

⩽− 0.5

1
+ 1 = 0.5

(25)



∀ϵ > 0,∃S = − ln 2ϵ
Ψ◦p(tl0)

, s.t.,∀s > S,

− e
−

∫ t∗0
tl0

ρs(u)du
+ 1

=− 0.5

Φs ◦Ψ ◦ p(tl0)
+ 1

=− 0.5

(1 + e−s·Ψ◦p(tl0))−1
+ 1

⩾− 0.5

(1 + e
− − ln 2ϵ

Ψ◦p(tl0)
Ψ◦p(tl0)

)−1

+ 1

=− 0.5

(1 + eln 2ϵ)−1
+ 1

=− 0.5

(1 + 2ϵ)−1
+ 1

=− ϵ+ 0.5

(26)

The Equ. 25 and 26 derive that:

lim
s→∞

(−e
−

∫ t∗0
tl0

ρs(u)du
+ 1) = 0.5 (27)

It has been proved in Equ. 20 that:

lim
s→∞

(−e−
∫ tl0
0 ρ(u)du + 1) = 0, i.e., (28)

lim
s→∞

(e−
∫ tl0
0 ρ(u)du) = 1 (29)

The equations 22, 27 and 29 together derive that:

lim
s→∞

∫ tr0

tl0

wn(t)dt

= lim
s→∞

(e−
∫ tl0
0 ρs(u)du(−e

−
∫ t∗0
tl0

ρs(u)du
+ 1))

=0.5

(30)

The Equ. 30 determines that the rendered color C(o, v)
of NeuS in UDF cannot converge to the ground-truth color
c(p(t∗0), v) as up to half of the weight is not constrained,
which causes the mixed rendering color with undesired bias
and inherent geometric error. This completes the proof of
Equ. 7.

Distribution of Bias. Further, we illustrate the compo-
nents of the bias, e.g., cm and cn, and show the correspond-
ing distribution.

For t ∈ (t∗0, t
∗
1), where t∗0 and t∗1 denotes the first and

second intersection points along the ray p(t). Consider that:

wn(t) = ρs(t)e
−

∫ t
0
ρs(u)du

= ρs(t)e
−

∫ t
t∗0

ρs(u)du · e−
∫ t∗0
0 ρs(u)du

(31)

As is proved, lims→∞ e−
∫ t∗0
0 ρs(u)du = 0.5, there is:

wn(t
∗
1) = 0.5ρs(t)e

−
∫ t∗1
t∗0

ρs(u)du (32)

According to the assumption that ∃(tl1, tr1) ∋ t∗1, the
UDF value Ψ(t) along the ray is linear for t ∈ (tl1, t

r
1). So

similarly we can prove that:

lim
s→∞

∫ t∗1

0

wn(t)dt

=0.5 lim
s→∞

∫ t∗1

0

ρs(t)e
−

∫ t
t∗0

ρs(u)du
dt

=0.25

(33)

Consequently, for any given k > 0, we have:

lim
s→∞

∫ t∗k

0

wn(t)dt =
1

2k+1
(34)

The colors of the k invisible surfaces are mixed to
the output color C(o, v), whose weight sums to 2k−1

2k+1 .
The mixed colors integral cm leads to the undesired bias
2k−1
2k+1 cm, which cannot be corrected during training. The
last weight 1 − 0.5 − 2k−1

2k+1 = 1
2k+1 comes from the dis-

turbance besides the neighborhood of surfaces, and leads
to new redundant surfaces during training. The bias cm and
cn case inherent geometric error like redundant surfaces and
floating noises in invisible space.

3. Proofs of Unbiased and Occlusion-aware
properties of NeUDF

In this subsection we illustrate the capability of NeUDF
for UDF learning from three aspects. First we show that
different from NeuS, NeUDF avoids the cm and cn which
cause the biased rendering color and inherent geometric er-
ror in UDF. Then we give the proofs of the unbiased and
occlusion-aware properties of NeUDF respectively.

3.1. Avoidance of cm and cn in NeUDF.

Before providing the detailed proofs of the unbiased and
occlusion-aware properties of NeUDF, we briefly show that
NeUDF is free from the undesired colors cm and cn by in-
troducing the new rendering weight function:

wr(t) = τr(t)e
−

∫ t
0
τr(u)du, (35)

τr(t) =

∣∣∣∣∣ ∂ςr◦Ψ◦p
∂t (t)

ςr ◦Ψ ◦ p(t)

∣∣∣∣∣ , (36)

where ςr(d) satisfies that:

ςr(0) = 0, lim
d→∞

= 1, (37)

∀d > 0, ς ′r(d) > 0, ς ′′r (d) < 0. (38)



Similar to the derivation in 2, there is:

lim
r→∞

∫ tl0

0

wr(t)dt = 0 (39)

and

lim
r→∞

∫ t∗0

tl0

wn(t)dt

= lim
r→∞

e−
∫ tl0
0 τr(u)du(−e

−
∫ t∗0
tl0

τr(u)du
+ 1)

= lim
r→∞

−e
−

∫ t∗0
tl0

τr(u)du
+ 1

(40)

When t ∈ (tl0, t
r
0), there is:

∂Ψ ◦ p(t)
∂t

= − |cos θ| < 0 (41)

We have:

− e
−

∫ t∗0
tl0

τr(u)du
+ 1

=− e
−

∫ t∗0
tl0

∣∣∣∣ ∂ςr◦Ψ◦p
∂u

(u)

ςr◦Ψ◦p(u)

∣∣∣∣du
+ 1

=− e
−

∫ t∗0
tl0
| ∂
∂u ln ςr◦Ψ◦p(u)|du

+ 1

=− e

∫ t∗0
tl0

∂
∂u ln ςr◦Ψ◦p(u)du

+ 1

=− eln ςr◦Ψ◦p(t∗0)−ln ς◦Ψ◦p(tl) + 1

=− ςr ◦Ψ ◦ p(t∗0)
ς ◦Ψ ◦ p(tl)

+ 1

=− 0 + 1

=1

(42)

So we have:

lim
r→∞

∫ t∗0

tl0

wn(t)dt = 1 (43)

It follows that:

lim
r→∞

C(o, v) = lim
r→∞

∫ t∗0

tl0

wn(t)dt · c(p(t∗0), v)

+ (1− lim
r→∞

∫ t∗0

tl0

wn(t)dt) · cm

=c(p(t∗0), v)

(44)

It indicates that NeUDF avoids the limitation introduced
by the undesired mixture cm (and cn). The detailed proof of
unbiased property of NeUDF is provided in the next section.

3.2. Proof of Unbiased Property in NeUDF.

Intuitively, the rendering weight function should be un-
biased, i.e., more contribution should come from the inter-
section point than its neighbor. In this subsection we prove
that NeUDF is unbiased:

• Given the ray p(t) and the UDF Ψ(x), the weight of
rendering wr(t) in NeUDF attains a locally maximum
value at a intersection point t∗.

Assume that the weight wr(t) is a linear function within
the local neighborhood (tl, tr) of the zero point t∗ ∈
(tl, tr). We consider the intervals (tl, t∗) and (t∗, tr) re-
spectively. For t ∈ (tl, t∗), we have:

wr(t) = τr(t)e
−

∫ t
0
τ(u)du

= τr(t)e
−

∫ tl

0
τ(u)due−

∫ t

tl
τ(u)du

= τr(t)e
−

∫ tl

0
τ(u)due

−
∫ t

tl

∣∣∣∣ ∂ςr◦Ψ◦p
∂u

(u)

ςr◦Ψ◦p(t)

∣∣∣∣du
= τr(t)e

−
∫ tl

0
τ(u)due−

∫ t

tl | ∂
∂u ln ςr◦Ψ◦p(u)|du

= τr(t)e
−

∫ tl

0
τ(u)due−

∫ t

tl
∂
∂u ln ςr◦Ψ◦p(u)du

= τr(t)e
−

∫ tl

0
τ(u)dueln ςr◦Ψ◦p(t)−ln ςr◦Ψ◦p(tl)

= τr(t)e
−

∫ tl

0
τ(u)du eln ςr◦Ψ◦p(t)

eln ςr◦Ψ◦p(tl)

= τr(t)e
−

∫ tl

0
τ(u)du ςr ◦Ψ ◦ p(t)

ςr ◦Ψ ◦ p(tl)

=

∣∣∣∣∣ ∂ςr◦Ψ◦p
∂u (u)

ςr ◦Ψ ◦ p(t)

∣∣∣∣∣ e− ∫ tl

0
τ(u)du ςr ◦Ψ ◦ p(t)

ςr ◦Ψ ◦ p(tl)

=

∣∣∣∂ςr◦Ψ◦p(t)
∂Ψ◦p(t)

∣∣∣ · ∣∣∣∂Ψ◦p(t)
∂t

∣∣∣
|ςr ◦Ψ ◦ p(t)|

e−
∫ tl

0
τ(u)du ςr ◦Ψ ◦ p(t)

ςr ◦Ψ ◦ p(tl)

=
|ς ′r ◦Ψ ◦ p(t)| · |cos θ|

|ςr ◦Ψ ◦ p(t)|
e−

∫ tl

0
τ(u)du ςr ◦Ψ ◦ p(t)

ςr ◦Ψ ◦ p(tl)

=
ς ′r ◦Ψ ◦ p(t) · |cos θ|

ςr ◦Ψ ◦ p(t)
e−

∫ tl

0
τ(u)du ςr ◦Ψ ◦ p(t)

ςr ◦Ψ ◦ p(tl)

=
ς ′r ◦Ψ ◦ p(t) · |cos θ| · e−

∫ tl

0
τr(u)du

ςr ◦Ψ ◦ p(tl)
(45)

For a given parameter r, ςr ◦Ψ◦p(tl), e−
∫ tl

0
τr(u)du and

|cos θ| are all constant. So we have:

wr(t) = A·ς ′r ◦Ψ◦p(t), A =
|cos θ| · e−

∫ tl

0
τr(u)du

ςr ◦Ψ ◦ p(tl)
, (46)

where A is a fixed positive number for any given r.
Note that ς ′r(d) > 0, ς ′′r (d) < 0, it follows that:

wr(t1) > wr(t2),∀t1 > t2, t1, t2 ∈ (tl, t∗). (47)



For t ∈ (t∗, tr), we have:

τr(t) =

∣∣∣∣∣ ∂ςr◦Ψ◦p
∂t (t)

ςr ◦Ψ ◦ p(t)

∣∣∣∣∣ = ς ′r ◦Ψ ◦ p(t) · |cos θ|
ςr ◦Ψ ◦ p(t)

(48)

∀t1 > t2, t1, t2 ∈ (t∗, tr), there is:

τr(t1) < τr(t2) (49)

e−
∫ t1
0 τr(u)du < e−

∫ t2
0 τr(u)du (50)

It follows that:

wr(t1) < wr(t2),∀t1 > t2, t1, t2 ∈ (tl, t∗). (51)

The Equ. 47 and 51 indicates that the point closer to the
zero point is with higher weight value. Note that the proof
does not require a strict zero point t∗, i.e., the property holds
true when there is a small perturbation ∆ to the zero point
t∗: Ψ ◦ p(t∗) = ∆ > 0.

Empirically, the zero point of the UDF is encoded as a
small positive number, so the weight function wr(t) is con-
tinuous along the ray. Therefore we have:

wr(t
∗) > wr(t),∀t ∈ (tl, tr), t ̸= t∗ (52)

This completes the proof.

3.3. Proof of Occlusion-aware Property in NeUDF.

In this subsection we prove that NeUDF is occlusion-
aware. Intuitively, for two parts of the sample ray with the
same UDF value, we hope that more contribution of the out-
put colors is from the part closer to the camera. That is, the
closer surfaces are more likely to have higher weight.

Specifically, given two surfaces S1 and S2 such that S1
is closer to the camera, for two corresponding points p(t1)
and p(t2) with the same UDF value, we have:∫ t1+δ

t1

wr(t)dd1(t) >

∫ t2+δ

t2

wr(t)dd2(t), (53)

where di(t) denotes the distance between the location p(t)
and the surface Si, and δ denotes the small step length.

τr(t) =

∣∣∣∣∣ ∂ςr◦Ψ◦p
∂t (t)

ςr ◦Ψ ◦ p(t)

∣∣∣∣∣ = |ς ′r ◦Ψ ◦ p(t)| · |cos θ|
ςr ◦Ψ ◦ p(t)

(54)

For t1 < t2,Ψ(t1) = Ψ(t2), wr(t1), wr(t2) > 0, we
have:

τr(t1)

|cos θ1|
=

|ς ′r ◦Ψ ◦ p(t1)|
ςr ◦Ψ ◦ p(t1)

=
|ς ′r ◦Ψ ◦ p(t2)|
ςr ◦Ψ ◦ p(t2)

=
τr(t2)

|cos θ2|
(55)

e−
∫ t1
0 τr(u)du > e−

∫ t2
0 τr(u)du (56)

There is:

wr(t1)

|cos θ|
=

τr(t1)e
−

∫ t1
0 τr(tu)du

|cos θ|

>
τr(t2)e

−
∫ t2
0 τr(tu)du

|cos θ|
=

wr(t2)

|cos θ|

(57)

It follows that:∫ t1+δ

t1

wr(t)dd1(t) =

∫ t1+δ

t1

wr(t)

|cos θ|
dt (58)

∫ t2+δ

t2

wr(t)dd2(t) =

∫ t2+δ

t2

wr(t)

|cos θ|
dt (59)

∫ t1+δ

t1

wr(t)dd1(t) >

∫ t2+δ

t2

wr(t)dd2(t), (60)

where di(t) denotes the distance between the location p(ti)
and the surface Si.

The Equ. 60 indicates that the cumulative weight near
the the first intersected surface are higher that the second
one. This means that more concentration are on the former
surface. Note that no prior assumption of the existence of
other intersected surfaces is required, i.e., the property of
occlusion-aware holds true for more than two surface in-
tersections along the ray. This completes the proof of the
occlusion-aware property.

4. Implementation Details
4.1. Network Architecture

Similar to IDR [5] and NeuS [5], we use two MLP net-
works to respectively encode the UDF and the color. The
input of the UDF network is the spatial location p(t) and
the output is the corresponding UDF value along with a
256-dimensional feature vector. The UDF network Ψ(x)
consists of 8 hidden layers with hidden size of 256, and the
activation function is chosen as the Softplus with β = 100
for all hidden layers and the output layer. A skip connection
is also used to connect the input with the output of the fourth
layer. The inputs of the color network are the spatial loca-
tion p(t), the view direction v, the gradient n of the UDF
network at the spatial location p(t) and the corresponding
feature vector derived by the UDF network. The color net-
work c(x, v) consists of 4 hidden layers with hidden size of
256. Normal regularization is applied before the gradient n
of the UDF network is used as the input of the color net-
work. Same positional encoding and weight normalization
are adopted as in Neus.



4.2. Training Details

Discretization. We adopt the α-compositing to discretize
the weight function, which divides the sample ray into bins
by sampling n points p(ti) = o+ ti|i = 1, ..., n, ti < ti+1

and accumulate colors within each bin according to the
weight integral:

αi = 1− e−
∫ ti+1
ti

τr(t)dt

=
|ςr ◦Ψ ◦ p(ti)− ςr ◦Ψ ◦ p(ti+1)|

ςr ◦Ψ ◦ p(ti)
.

(61)

We slightly modify Equ. 61 by:

αi =
ςmax
i − ςmin

i

ςmax
i

, (62)

where ςmax
i and ςmin

i is the maximum and minimum of the
set {ςr ◦Ψ ◦ p(ti), ςr ◦Ψ ◦ p(ti+1)}.

Up Sampling. We first formally sample 64 points per ray,
and then hierarchically conduct importance sampling on top
of the sampling weight ws(t) for another 64 points:

ws(t) = τs(t)e
−

∫ t
0
τs(u)du, τs(t) = ζs ◦Ψ ◦ p(t) (63)

And ζs(·) satisfies the rules: ζs(d) > 0 and ζ ′s(d) <
0,∀d > 0. Intuitively, the τs(t) derived by the monoton-
ically decreasing function is a view-invariant sampling den-
sity, and the density has positive correlation with the UDF
value. To derive the sampling weight ws(t), the classical
volume rendering scheme is applied.

The weight of the ith sample point ws(ti) is slightly
modified by:

w′
s(ti) = max{ws(ti+k), k = −1, 0, 1} (64)

And then the weight w′
s(t) is normalized so that the integral

equals to one:

w′′
s (t) =

w′
s(t)∑n−1

i=0 w′
s(ti)

(65)

For each iteration we hierarchically conduct the impor-
tance sampling for two times, and each time 32 points are
sampled. The total number of sampling points are 128. If no
masks are provided, 32 points are randomly sampled in ad-
dition outside the unit sphere per ray to represent the outside
scene. The outside scene is represented with NeRF++ [7],
as used in NeuS [5].

Platform. The network is trained with ADAM optimizer,
and the learning rate warms up to 2 × 10−4 in the first 5k
iterations, and decreases to 1 ∗ 10−5 by the end of training.
For each iteration, 512 random rays are sampled from 8 in-
put camera poses randomly selected. We train each model
for 400k iterations in total for 9 hours for the setting of with
mask, and 11 hours for the setting of without mask on a
single Nvidia 3090 GPU.

4.3. Data Preparation

Figure 1. Poses of the camera. The camera poses are represented
as the yellow pyramid, and the object to reconstruct is represented
in purple.

Rendered Data. To generate the customized data, we use
the pyrender package to render images from the ground-
truth objects. We rendered 200 views at 800 × 800 pixels
for each textured mesh or colored point cloud. Fig 1 visu-
alizes the camera poses. Corresponding masks with black
background are provided optionally. Only the rendered im-
ages and the masks are used as inputs of the network.

Captured Data. We additionally captured several real-
world objects using the mobile phone. The captured images
are extracted from the captured videos around the object.
For the book object we captured 200 images at the reso-
lution of 1920 × 1440. For the fan object we captured 59
images at the resolution of 3456×4608. For the book object
we captured 200 images at the resolution of 720×1280. All
the camera poses are estimated by COLMAP [3, 4] and no
masks are provided.



5. Additional Results
We visualize more reconstruction results of NeUDF on

DF3D [8], MGN [1], DTU [2], BMVS [6] datasets and real-
captured data. Fig. 2 shows the comparison with NeuS on
the DF3D dataset without mask supervision. Fig. 3 shows
the comparison with NeuS on the DF3D dataset with mask
supervision. Fig. 4 shows the comparison with NeuS on
the MGN dataset without mask supervision. Fig. 5 shows
the comparison with NeuS on the MGN dataset with mask
supervision. Fig. 6 shows the comparison with NeuS on
the DTU and BMVS datasets with mask supervision. Fig. 7
shows the additional results of the real-captured scenes with
open surfaces.
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Input NeuS Ours Ground-truth

Figure 2. Additional results on the DF3D [8] dataset without mask supervision.
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Figure 3. Additional results on the DF3D [8] dataset with mask supervision.
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Figure 4. Additional results on the MGN [1] dataset without mask supervision.
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Figure 5. Additional results on the MGN [1] dataset with mask supervision.
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Figure 6. Additional results on the DTU [2] dataset (the first three scenes) and BMVS [6] dataset (the last one scene) with mask supervision.
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Figure 7. Additional results of the real-captured data without mask supervision.


