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This document provides additional visualizations and ex-
perimental results to support the main paper. We demon-
strate results of quantization error on model output in Ap-
pendix A, visualize prediction scores for ImageNet classes in
Appendix B, illustrate more histogram examples of the input
and output activation distributions on different transformer
layers in Appendix C, discuss memory and computation
overhead in Appendix D, and show additional experimental
results in Appendix E.

A. Quantization error of model output
In this section, we show the comparison of the output

logits between EasyQuant [10] and NoisyQuant with 6-bit
ViT [1], DeiT [8] and Swin [5] models. Here NoisyQuant
is implemented on top of EasyQuant with the proposed
noisy bias enhancement. We go through the whole Ima-
geNet validation set and calculate the mean-square error of
model output logits on each quantized model compared to
the pretrained floating-point counterpart. As shown in Tab. 1,
NoisyQuant achieves quantization error reduction on all
model outputs, especially for ViT-S (17%) and Swin-T (16%)
models.

B. Visualization of model output
Following Appendix A, we visualize model output

in Fig. 1 to give further perspectives on how the reduced
quantization error achieved by NoisyQuant improved final
accuracy. Specifically, we plot prediction logits produced by
the floating-point (red), EasyQuant (gray), and NoisyQuant
(green) models on the 1000 ImageNet [7] classes, respec-
tively. The highest logits are marked with stars, where
the location of the red star corresponds to the ground truth

* Equal contribution.
� Corresponding Author.

Table 1. Quantization error of model output. Models are quan-
tized by EasyQuant and NoisyQuant with the W6A6 setting.

Model EasyQuant [10] NoisyQuant Reduction
ViT-S 1.0400 0.8583 0.1818 (17%)
ViT-B 0.6365 0.5982 0.0383 ( 6%)
ViT-B* 0.6956 0.6360 0.0596 ( 9%)
DeiT-S 0.3270 0.2934 0.0335 (10%)
DeitT-B 0.2869 0.2584 0.0284 (10%)
DeiT-B* 0.1984 0.1760 0.0224 (11%)
Swin-T 0.0913 0.0765 0.0148 (16%)
Swin-S 0.0296 0.0289 0.0007 ( 2%)
Swin-B 0.0505 0.0457 0.0047 ( 9%)
Swin-B* 0.0412 0.0399 0.0013 ( 3%)

class. With less quantization error, NoisyQuant logits closely
match that of the floating-point model, thus achieving better
performance than EasyQuant.

C. Additional input and output activation his-
togram

In this section, we present more histogram examples
of layer input and output as previously described in Sec.
4.2 of the main paper. We briefly illustrate the pipeline of
EasyQuant and NoisyQuant in Fig. 2. The top-left sub-figure
refers to input activation X , and EasyQuant follows the gray
arrow while NoisyQuant follows the blue. NoisyQuant uti-
lizes the proper-selected noisy bias N to refine the input
before quantization (shown in the bottom-left sub-figure).
The output histograms are shown in the right sub-figures,
and we point out the mismatch caused by EasyQuant with
the orange arrow.

As we have emphasized in the main paper, transformer
layers produce sophisticated activation distributions. Fig. 2
gives more examples from different transformer layers.
Fig. 2a and Fig. 2b show fc2 layers in ViT-S and DeiT-S
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(a) Ground truth = 597

(b) Ground truth = 38

Figure 1. Model output of the floating-point (red), EasyQuant (green), and NoisyQuant (gray) model. The floating-point and NoisyQuant
models give correct predictions (red/green star) while EasyQuant gives wrong prediction (gray star).

which takes GELU [2] activations as input; the asymmetric
and heavy-tailed input activation distribution makes a neg-
ative impact on the layer output produced by EasyQuant.
Instead, NoisyQuant refines the distribution to achieve a bet-
ter match in the quantized layer output. Fig. 2c gives an
example of the downsample layer in Swin models which as
well enjoys the noisy bias enhancement.

D. Memory and computation overhead

Memory overhead. In practice, for weights W ∈ Rk×m

and activations X ∈ Rm×n, we follow the standard im-
plementation to set bias B ∈ Rk×1 and sample noise
N ∈ Rm×1, so the denoising bias B′ = B − qW (W )N

is also Rk×1, where qW (·) is the quantizer. The sum follows
the broadcasting rule. Storing N brings minimal overhead,
for instance, DeiT-B* has 86.9M params, with only 0.06M
(0.07%) for storing the noise.
Computation overhead. The matrix multiplication, i.e.,
WX , dominates the computation of ViT linear layers, re-
quiring 103× more MAC than the number of adds in X+N
and bias. So the cost of FP32 add is negligible (<0.4%)
to that of INT8 layer. Further, N and B′ can be INT16
rather than FP32, enabling integer-only inference and reduc-
ing the cost of add to <0.03%. We observe no accuracy
differences in using INT16 or FP32 for N and B′ in our
experiments. We estimate the energy cost with 0.23pJ/Int8-



Table 2. Performance with smaller calibration set.

Size W/A ViT-S ViT-B ViT-B* DeiT-S DeiT-B DeiT-B* Swin-T Swin-S Swin-B Swin-B*

32 6/6 76.81 81.89 82.81 76.30 79.71 81.19 79.97 82.74 84.55 85.90
128 6/6 76.87 81.97 82.86 76.47 80.20 81.24 80.13 82.68 84.44 86.00

1024 6/6 76.86 81.90 83.00 76.37 79.77 81.40 80.01 82.78 84.57 85.90

Table 3. Comparing to reparameterization.

Model W/A Reparam. NoisyQuant
ViT-S 6/6 76.66 78.90 ± 0.06

DeiT-B 6/6 81.03 81.26 ± 0.04
Swin-S 6/6 82.46 82.83 ± 0.04

MAC, 0.9pJ/FP32-Add, and 0.05pJ/Int16-Add following [3].

E. Additional experiments
Ablation study on calibration size. We follow [6]’s
setting for calibration size 1024. Further experiments show
that calibration size as low as 32 can still produce similar
performance (see Tab. 2).
Additional baselines. Concurrent works [4, 9] introduce
the reparameterization approach which reparameterizes
LN layer to suppress outliers by scaling down activation
values. NoisyQuant is orthogonal as we actively change
the activation distribution being quantized without scaling.
So NoisyQuant can be plugged in after reparameterization.
We reproduce the reparameterization used in the two works
and subsequently add NoisyQuant to show consistent
improvement in Tab. 3.
Additional models. Beyond ViT, on ResMLP-24 with
W6A6, NoisyQuant (76.71%) beat EasyQuant (76.48%) by
0.23%.
Performance at low bit. NoisyQuant outperforms
EasyQuant by 1.06% and 4.60% respectively on 5-/4-bit
Swin-T.
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(a) fc2 layer in ViT-S

(b) fc2 layer in DeiT-S

(c) downsample layer in Swin-B

Figure 2. Input (left) and output (right) histogram on different layers.


