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A. More Details of CNN models Implementa-
tions

This section will add more experimental details for CNN
models. We apply different hyper-parameters λr and λc for
different types of networks. The regularization parameter
λr is set to 0.2 for ResNet-18 and ResNet-50 [4] and 0.1
for other CNN architectures. Moreover, we set the hyper-
parameter λc for DC to 0.005 for MobileNetV2 [7], 0.001
for MNasNet [8], and 0.02 for other CNN architectures.

B. Effects on different calibration data sizes

We conduct experiments on 256, 1024, and 4096 calibra-
tion data sizes. Tab. 1 shows that PD is effective on calibra-
tion data of different sizes. The effect of DC decreases as
the size of calibration sets increases because the calibration
set’s distribution is getting closer to the training set.

Model ResNet-18 MobileNetV2

Size 256 1024 4096 256 1024 4096

QDrop 46.22 51.42 54.48 7.53 10.28 10.88
PD 46.76 52.74 55.30 9.29 13.49 16.47

PD+DC 47.28 53.08 55.33 9.48 14.17 16.55

Table 1. Effects on different calibration dataset sizes for PD-
Quant. All the results in the table are quantized to W2A2.

C. PD Loss on Transformer Models

Besides CNN, we further extend the proposed method to
Transformer models. We evaluate our PD-Quant on both
ViT [2] and DeiT [9] at different bit settings.

C.1. Implementation Details

We keep most parameter settings the same as in CNN,
including the learning rate, iterations, and calibration data
numbers. However, we set the batch size to 16 and regu-
larization parameters λr to 0.1 for Transformer models. We
did not apply DC to the quantization of Transformer models
because there are no batch normalization layers.

We quantize all the weights and inputs for the fully-
connect layers, including the first projection layer and the

last head layer. The two input matrices for the matrix mul-
tiplications in the self-attention modules are also quantized.
Moreover, the inputs of the softmax layers and the normal-
ization layers are not quantized, the same as in previous
work [5, 12].

We still take QDrop as the baseline method and define
the encoder in Transformer models as the block. Our imple-
mentation for Transformer models is based on open-source
code, and the pre-trained FP models are all from [11].

C.2. Performance Comparison

We compare our proposed PD-Quant with QDrop [10]
and PTQ4ViT [12] for both ViT and DeiT. PQT4ViT is a
post-training quantization framework designed for Trans-
former model quantization. Moreover, it shows the state-
of-the-art results among all transformer quantization algo-
rithms in W6A6. We keep the same quantization environ-
ment and use the same pre-trained model for comparison.

As seen in Appendix C.1, PD-Quant can improve the re-
sults of QDrop, similar to the effects in CNN models. We
implemented PTQ4ViT based on open-source code.

D. Optimization of Activation Scaling Factors
and Rounding values

QAT method LSQ [3] first optimizes activation scaling
factors (Sa) by final objective. Since only limited unlabeled
data is available in PTQ, we propose PD loss to optimize
Sa. When optimizing only Sa, the gradients are given by

∂LPD

∂Sa
=



∂LPD

∂x̃
qmax

x

Sa
≥ qmax

∂LPD

∂x̃

(
⌊ x

Sa
⌉ − x

Sa

)
qmin <

x

Sa
< qmax

∂LPD

∂x̃
qmin

x

Sa
≤ qmin

,

(1)
where STE [1] calculates the gradients of the round func-
tion.

When optimizing rounding values (θ), we follow [6] to
adopt a sigmoid-like function σ(θ) deciding weight round-



Model Method Bits (W/A) Acc (%)

PTQ4ViT* [12]
W6A6

70.72
QDrop* [10] 70.25
PD-Quant 70.84

PTQ4ViT* [12]
W4A6

53.55
ViT-S/16/224 QDrop* [10] 67.57

74.65 PD-Quant 68.64

PTQ4ViT* [12]
W2A6

0.31
QDrop* [10] 45.16
PD-Quant 48.13

PTQ4ViT* [12]
W6A6

74.24
QDrop* [10] 75.76
PD-Quant 75.82

PTQ4ViT* [12]
W4A6

52.97
ViT-B/16/224 QDrop* [10] 75.51

78.01 PD-Quant 75.52

PTQ4ViT* [12]
W2A6

0.24
QDrop* [10] 63.74
PD-Quant 64.51

PTQ4ViT* [12]
W6A6

76.83
QDrop* [10] 77.95
PD-Quant 78.33

PTQ4ViT* [12]
W4A6

74.17
DeiT-S/16/224 QDrop* [10] 77.66

79.71 PD-Quant 77.88

PTQ4ViT* [12]
W2A6

3.79
QDrop* [10] 65.76
PD-Quant 67.53

Table 2. Comparison on PD-Quant for Transformer models. * rep-
resents our implementation with open-source code. ViT-S/16/224
denotes patch size is 16 × 16 the input resolution is 224 × 224.
All the results listed are the top-1 accuracy (%).

ing up or down. The minimization problem for θ conver-
gence is given by

argmin
θ

∑
(1− |2σ(θ)− 1|β), (2)

where σ(θ) = 0 means weight rounds down and σ(θ) = 1
means weight rounds up.
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