PartSLIP: Low-Shot Part Segmentation for 3D Point Clouds via Pretrained Image-Language Models - Supplementary Material

Minghua Liu ${ }^{1}$, Yinhao Zhu ${ }^{2}$, Hong Cai 2, Shizhong Han 2, Zhan Ling 1, Fatih Porikli ${ }^{2}$, Hao Su ${ }^{1}$
${ }^{1}$ UC San Diego, ${ }^{2}$ Qualcomm

S. Supplementary Material

S.1. PartNet-Ensembled Dataset

Table S1 shows the statistics of the proposed PartNetEnsembled (PartNetE) dataset. The few-shot and test shapes come from PartNet-Mobility [12], and the additional training shapes come from PartNet [5]. All three sets share consistent part definitions. To construct a diverse, clear, and consistent 3D object-part dataset, we select a subset of 100 object parts from the original PartNet and PartNet-Mobility annotations, and manually annotate three additional parts (i.e., Kettle spout, KitchenPot handle, and Mouse cord). Specifically, we filter out extremely fine-grained parts (e.g., "back_frame_vertical_bar" for chairs), ambiguous parts, inconsistently annotated parts, and rarely seen parts of the original datasets. As a result, each object category contains 1-6 parts in our PartNetE dataset, covering both common coarse-grained parts (e.g., chair back and tabletop) and fine-grained parts (e.g., wheel, handle, button, knob, switch, touchpad) that may be useful in downstream tasks such as robotic manipulation. For shapes from PartNet-Mobility, they have textures, while for shapes from PartNet, they do not. The unbalanced data distribution is a critical issue when using the additional 28 k training shapes. We may have nearly 10 k shapes for common categories (e.g., Table) but only 8 for some non-overlapping categories. We believe our dataset could benefit future works on low-shot and textdriven 3D part annotation, which do not rely on large-scale supervised learning to infer part definitions.

S.2. Real-World Demo

Figure S1 shows more examples when our method and baseline approaches are applied to point clouds captured by an iPhone 12 Pro Max equipped with a LiDAR sensor. Specifically, we utilize the APP "polycam" to scan daily objects and generate fused point clouds with color. We use MeshLab to remove ground points and compute point normals. For baseline approaches, we randomly sample 10,000 points as input.

As shown in the figure, our method can directly generalize to iPhone-scanned point clouds without significant
domain gaps, while baseline methods perform poorly. For PointNext [7] of the " $45 \mathrm{x} 8+28 \mathrm{k}$ " setting (third row), it uses the additional 28 k training data but still fails to recognize many parts (e.g., cart wheels, trashcan footpedal, lid and head of the dispenser, chair wheels, suitcase wheels, drawers and handles of the storage furniture, handle of the kettle). The few-shot version (fourth row) performs even worse and can only identify a few parts.

S.3. Visualization of Ablation Studies

Few-Shot Prompt Tuning Figure S2 shows the comparison before and after few-shot prompt tuning. The pretrained GLIP model (first row) fails to understand the meaning of many part names. However, after prompt tuning with only one or a few segmented 3D shapes (second row), the GLIP model quickly adapts to part definitions and can generalize to unseen instances.

Multi-View Visual Feature Aggregation Figure S3 shows the comparison with and without multi-view visual feature aggregation. When there is no multi-view visual feature aggregation (first row), the GLIP model fails to detect parts from some unfamiliar camera views. However, after aggregating visual features from multiple views (second row), the GLIP model can comprehensively understand input 3D shapes and make more accurate predictions for those unfamiliar views.

Variations of Input Point Clouds To evaluate the robustness of our method, we have tried multiple variations of input point clouds (see Table 4 of the main paper). Figure S4 exemplifies 2D images used to generate input point clouds and point cloud renderings fed to the FLIP model. In the original setting, we use 6 RGB-D images with a resolution of 512×512 to generate the fused point cloud, which is then projected to 102 D images with a resolution of 800×800. Note that when point clouds are sparse, we increase the point size to reduce the artifacts of point cloud renderings. Please zoom in to find the differences between point cloud renderings. As shown in Table 4 of the main paper, our proposed method is robust against various input point cloud variations.

Table S1. The table shows the statistics of the PartNetE dataset: category name, part names, number of few-shot shapes, test shapes, and additional training shapes (if applicable). The 17 overlapping object categories are bolded.

category	parts	few-shot test extra-train \\|			category	parts	few-shot	test	extra-train
Bottle	lid	8	49	471	Microwave	display, door, handle, button	8	8	234
Box	lid	8	20	0	Mouse	button, cord, wheel	8	6	0
Bucket	handle	8	28	0	Oven	door, knob	8	22	0
Camera	button, lens	8		0	Pen	cap, button	8	40	0
Cart	wheel	8	53	0	Phone	lid, button	8	10	0
Chair	arm, back, leg, seat, wheel	8		8000	Pliers	leg	8	17	0
Clock	hand	8	23	593	Printer	button	8	21	0
CoffeeMachine	button, container, knob, lid	8	46	0	Refrigerator	door, handle	8	36	195
Dishwasher	door, handle	8	40	179	Remote	button	8	41	0
Dispenser	head, lid	8	49	0	Safe	door, switch, button	8	22	0
Display	base, screen, support	8	29	954	Scissors	blade, handle, screw	8	39	60
Door	frame, door, handle	8	28	237	Stapler	body, lid	8	15	0
Eyeglasses	body, leg	8	57	0	StorageFurniture	door, drawer, handle	8	338	2260
Faucet	spout, switch	8	76	681	Suitcase	handle, wheel	8	16	0
FoldingChair	seat	8	18	0	Switch	switch	8	62	0
Globe	sphere	8	53	0	Table	door, drawer, leg, tabletop, wheel, handle	8	93	9799
Kettle	lid, handle, spout	8	21	0	Toaster	button, slider	8	17	0
Keyboard	cord, key	8	29	165	Toilet	lid, seat, button	8	61	0
KitchenPot	lid, handle	8	17	0	TrashCan	footpedal, lid, door	8	62	358
Knife	blade	8	36	505	USB	cap, rotation	8	43	0
Lamp	base, body, bulb, shade	8	37	3246	WashingMachine	door, button	8	9	0
Laptop	keyboard, screen, shaft, touchpad, camera	8	47	430	Window	window	8	50	0
Lighter	lid, wheel, button	8	20	0	45 in total	103 in total	360	1,906	28,367

Figure S1. Real-world demo: iPhone-scanned point clouds (first row), text prompt for our method (second row), results of our method and baseline approaches (third to fifth rows). " 45 x 8 " indicates the few-shot setting, where the model is trained with 8 shapes per object category. " $45 \mathrm{x} 8+28 \mathrm{k}$ " indicates the setting where the additional 28 k shapes are used for training. Zoom in for details.

Figure S2. Ablation study of few-shot prompt tuning. First row: 2D part detection results of the GLIP pretrained model (zero-shot). Second row: detection results after 8 -shot prompt tuning.

| Display
 support | Dishwasher
 door | Table
 tabletop | StorageFurniture
 drawer | Chair
 arm | Box
 lid | Suitcase
 wheel | Kettle
 lid | Toaster
 slider |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | | Suitcase |
| :---: |
| handle |

Figure S3. Ablation study of multi-view visual feature aggregation. First row: 2D part detection results without the multi-view visual feature aggregation. Second row: detection results with the multi-view feature aggregation. Both models are prompt-tuned.

S.4. Text Prompts

In our experiments, our few-shot version (with prompt tuning) only utilized the concatenation of the part names as the text prompt (i.e., "arm, back, leg, seat, wheel"). In our zero-shot experiments, we incorporated the object category into the text prompt (i.e., "arm, back, leg, seat, wheel of a chair"). However, we recently found that removing them (only using part names) can lead to overall better performance (mIoU from 27.2 to 34.8 for semantic segmentation).

S.5. CLIP vs. GLIP

We have also considered using other pretrained visionlanguage models, such as CLIP [8], to help with part segmentation tasks. However, the CLIP model mainly focuses on the image classification task and cannot directly generate region-level output (e.g., 2D segmentation masks or bounding boxes). Moreover, as shown in Figure S5, we find that the pretrained CLIP model fails to tell whether an object has a fine-grained part. We conjecture that the CLIP model
is pretrained using image-level supervision, with fewer supervision signals about object parts. In contrast, the GLIP model is pretrained on 2 D detection and grounding tasks and is thus more sensitive to fine-grained object parts. As a result, the GLIP model is more suitable for our 3D part segmentation task.

S.6. Qualitative Comparison on PartNetE

Figure S6 shows the qualitative comparison between our method and baseline approaches. Our few-shot version (45×8) outperforms all existing few-shot methods and even produces better results than the " $45 \mathrm{x} 8+28 \mathrm{k}$ " version of PointNext, where the additional 28k 3D shapes are used for training. In particular, our method is good at detecting small object parts (i.e., wheel, bulb, screw, handle, knob, and button). Without any 3D training, our zero-shot version also achieves impressive results.

Figure S4. Five variants of input point clouds. For each variant, the first row shows mesh renderings by BlenderProc [1], which are used to fuse and generate the input point cloud. The resolutions of the images are shown in parentheses. The second row shows renderings of the input point cloud by Pytorch3D [9], which are fed to the GLIP model. The image resolution is 800×800. Artifacts of point cloud renderings (last row) can be seen when zoomed in.

S.7. Why not Use ShapeNetSeg?

We acknowledge that ShapeNetSeg [13] is a commonly used benchmark in prior research. However, we would like
to note that prior studies have used point clouds sampled from meshes, including interior structures, as input. Our method, on the other hand, focuses on point clouds fused

Figure S5. We perform binary classification using CLIP [8]. CLIP fails to identify whether an object has a part. Incorrect predictions are highlighted with red rectangles.
from multiple RGB-D images and cannot handle interior structures. This makes direct comparison with numbers reported in previous papers difficult. To ensure a fair comparison, previous methods would need to be re-run using the same input format (without interior points). Therefore, we focus on a consistent and extensive comparison on PartNetE, a more suitable benchmark for evaluating the generalizable part segmentation. PartNetE is larger, with 45 (vs. 16) object categories and finer-grained parts, and covers most of the categories in ShapeNetSeg. We re-run all baseline methods using a consistent setting on this more challenging benchmark to ensure a fair comparison.

S.8. Details of Baselines

We train baseline approaches on our PartNetE dataset.
PointNet++ and PointNext We use PointNext's official code base to train PointNet++ and PointNext for semantic segmentation under both the " 45×8 " and " $45 \times 8+28 \mathrm{k}$ " settings, as described in the main paper. Specifically, we adapt the configurations ${ }^{1}$ provided by PointNext and randomly sample 10,000 points per shape as the network in-

[^0]put. We use 148 -class segmentation heads for both baselines, including 103 part classes and 45 background classes (one for each object category). For PointNext, we utilize a c32 model and take point positions, normals and heights as input. For PointNet++, the model takes point positions and normals as input.

PointGroup and SoftGroup We use SoftGroup's official code base to train PointGroup and SoftGroup for instance segmentation under both the " 45 x 8 " and " $45 \mathrm{x} 8+28 \mathrm{k}$ " settings, as described in the main paper. Specifically, the training includes two stages: 1) training a backbone module for semantic and offset prediction; 2) training the rest modules while freezing the backbone from stage 1 . We randomly sample (up to) 50 k points for each shape and utilize the point positions and normals as the network input.

For the first stage, there are 104 classes (including 103 part classes and one background class), and points are highly unbalanced across the classes. To avoid losses being dominated by several common part classes, we apply frequency-based class weights, calculated as the inverse square root of point frequency [4], to cross-entropy and offset losses. We also disable data augmentations (e.g., elastic transform) designed for scene-scale datasets. The voxel scale for voxelization is set to 100 , and the backbone network is initialized with pretrained checkpoint hais_ckpt_spconv2.pth. We train the backbone for

Figure S6. Qualitative comparison between our method and baseline approaches on the PartNetE dataset. Semantic segmentation results are shown. For baseline approaches, we randomly sample 10,000 points as input. " 45 x 8 " indicates the few-shot setting, where the model is trained with 8 shapes per object category. " $45 \mathrm{x} 8+28 \mathrm{k}$ " indicates the setting where the additional 28 k shapes are used for training .

Table S2. Full table (1/2) of semantic segmentation results on the PartNetE dataset. Category mIoUs are shown. For 17 overlapping object categories, baseline models leverage additional 28 k training shapes in the $45 \mathrm{x} 8+28 \mathrm{k}$ setting. For the other 28 non-overlapping object categories, there are only 8 shapes per object category during training.

200 epochs with a batch size of 16 . We apply cosine learning rate attenuation starting from epoch 45 with an initial learning rate of 0.001 .

In the second stage, we train the remaining modules for instance segmentation, while freezing the trained backbone from the first stage. We train the networks with a batch size of 4 and an initial learning rate of 0.004 . Since the original
code is evaluated on indoor segmentation, we empirically tuned the parameters. Specifically, for the " 45×8 " setting, the grouping radius, mean active, and classification score threshold are set to $0.02,50$, and 0.001 , respectively. For the " $45 \mathrm{x} 8+28 \mathrm{k}$ " setting, the grouping radius, mean active, and classification score threshold are set to $0.01,300$, and 0.01 , respectively. In the " $45 \mathrm{x} 8+28 \mathrm{k}$ " setting, the few-shot

Table S3. Full table (2/2) of semantic segmentation results on the PartNetE dataset. Category mIoUs are shown. For 17 overlapping object categories, baseline models leverage additional 28 k training shapes in the $45 \mathrm{x} 8+28 \mathrm{k}$ setting. For the other 28 non-overlapping object categories, there are only 8 shapes per object category during training.

shapes are repeated 50 times in each epoch to mitigate the unbalanced data issue. The PointGroup is trained using a similar pipeline to SoftGroup, except using one-hot semantic results from the first-stage backbone instead of softmax
results.

ACD Inspired by [2], we utilize an auxiliary selfsupervised task to aid few-shot learning. Specifically, in

Table S4. The full table of instance segmentation results on the PartNetE dataset. Category mAP50s (\%) are shown. For 17 overlapping object categories, baseline approaches leverage additional 28 k training shapes in the $45 \mathrm{x} 8+28 \mathrm{k}$ setting. For the other 28 non-overlapping object categories, there are only 8 shapes per object category during training.

	category part	$45 \times 8+28 \mathrm{k}$		few-shot (45x8)		$\begin{array}{\|c\|c\|} \hline \text { zero-shot } \\ \hline \text { Ours } \\ \hline \end{array}$	category part	45x8+28k		few-shot (45x8)		$\frac{\text { zero-shot }}{\text { Ours }}$
		Point Soft Group [3] Group [10]		PointSoft Group [3] Group [10]				Point Group [3]	Soft Group [10]	Point Group [3]	Soft Group [10] Ours	
	Bottle lid	38.2	43.9	8.0	22.479 .4	75.5	Box lid	7.2	8.6	15.8	19.777 .2	24.2
	arm	94.6	95.1	35.9	71.067 .7	23.9	Bucket handle	1.5	1.6	1.0	1.118 .2	5.9
	back	82.0	73.2	83.8	93.795 .4	30.0	Camera button	1.0	1.5	4.5	6.133 .8	11.9
	Chair leg	88.6	93.6	92.2	89.978 .1	30.3	Camera lens	16.1	0.0	5.0	16.439 .9	4.9
	seat	75.0	85.9	81.4	88.185 .5	88.9	Cart wheel	29.2	28.4	28.5	$29.8 \quad 83.3$	79.3
	wheel	98.0	97.7	92.8	95.995 .5	99.3	button	1.0	1.0	1.1	$0.0 \quad \mathbf{2 . 2}$	1.8
	Clock hand	1.0	1.0	1.0	1.014 .9	4.2	CoffeeMachine container	2.5	4.0	13.6	19.732 .8	7.1
	Dishwasher door	76.7	75.0	50.6	55.657 .4	22.5	CoffeeMachine knob	5.6	5.0	3.3	1.513 .5	7.2
	Dishwasher handle	55.6	56.4	1.0	26.432 .9	0.0	lid	3.3	1.4	8.9	22.627 .6	19.5
		95.2	97.4	13.2	22.194 .2	58.3	Dispenser head	27.5	29.2	39.1	45.446 .4	13.7
	Display screen	46.0	55.4	32.9	49.270 .7	40.5	Dispenser lid	20.5	23.6	22.4	$30.2 \mathbf{8 0 . 6}$	5.0
	support	54.0	53.2	4.1	11.184 .0	0.0	Eyeglasses body	31.7	39.5	28.1	34.779 .5	1.0
	frame	36.8	28.3	2.7	9.82 .8	1.0	Eyeglasses leg	68.0	62.7	50.3	56.384 .9	1.2
	Door door	32.4	34.3	7.5	5.930 .7	3.0	FoldingChair seat	16.8	16.8	86.4	79.076 .7	87.0
	handle	1.0	1.0	1.0	1.020 .3	0.0	Globe sphere	63.1	63.1	80.2	75.781 .0	18.3
	Faucet spout	85.4	86.3	50.7	52.461 .7	3.1	lid	64.0	64.4	65.8	70.076 .1	30.9
	Faucet switch	74.5	72.5	11.2	22.247 .6	1.5	Kettle handle	51.4	54.3	45.0	59.078 .1	22.9
	ard cord	42.6	39.7	34.3	21.368 .6	25.0	spout	68.5	72.6	45.4	61.371 .9	1.0
	key	37.2	37.7	16.1	1.012 .3	1.0	KitchenPot lid	68.3	68.5	81.4	87.191 .5	1.0
	Knife blade	19.3	27.2	15.6	10.343 .9	22.1	KitchenPot handle	50.6	50.1	32.5	44.349 .5	1.3
	base	64.3	71.1	8.5	17.989 .9	87.2	lid	30.7	30.7	0.0	40.645 .8	24.1
	Lamp body	48.6	36.5	4.3	11.087 .4	1.0	Lighter wheel	6.0	5.3	0.0	47.934 .3	16.6
	Lamp bulb	54.5	59.2	7.1	$1.9 \quad 5.9$	5.9	button	64.1	67.8	0.0	63.223 .6	1.8
	shade	83.5	86.4	19.4	47.090 .1	49.0	button	1.0	1.0	0.0	$0.0 \quad 1.7$	1.7
	keyboard	0.0	0.0	40.1	53.853 .4	42.5	Mouse cord	1.0	1.0	0.0	1.066 .3	66.3
	screen	1.0	1.0	36.3	61.548 .5	59.5 \%	wheel	83.2	83.2	0.0	53.750 .5	8.9
	Laptop shaft	1.2	3.5	1.0	$0.0 \quad 2.0$	0.0 .	Oven door	26.5	31.9	0.0	19.154 .9	36.4
	touchpad	0.0	0.0	0.0	0.019 .7	9.9	Oven knob	1.0	1.0	0.0	1.674 .1	15.4
	camera	0.0	0.0	0.0	$0.0 \quad \mathbf{1 . 0}$	0.0	Pen cap	48.2	44.4	0.0	44.351 .6	7.8
	display	4.2	1.0	0.0	$1.0 \quad 6.3$	1.08	Pen button	16.9	16.9	0.0	10.937 .9	1.0
	Microwave door	62.6	57.1	0.0	31.034 .4	19.3	Phone lid	1.0	1.1	0.0	1.237 .8	12.0
	Microwave handle	1.0	1.0	0.0	0.060 .4	0.0	Phone button	1.0	1.0	0.0	$1.0 \quad 26.6$	2.8
	button	100.0	100.0	0.0	$\begin{array}{ll}22.8 & 3.2\end{array}$	4.0	Pliers leg	28.2	40.4	6.8	$\begin{array}{cc}14.5 & 4.7\end{array}$	5.9
	Refrigerator door	57.1	54.2	0.0	23.231 .3	14.3	Printer button	1.0	1.0	0.0	$0.0 \quad \mathbf{1 . 3}$	1.0
	Refrigerator handle	19.3	17.2	0.0	9.739 .7	8.6	Remote button	23.4	22.5	0.0	6.223 .1	3.5
	blade	6.2	6.5	4.5	3.014 .1	4.2	door	11.0	12.3	0.0	19.468 .4	28.7
	Scissors handle	82.0	82.9	41.9	34.558 .4	0.0	Safe switch	4.8	5.4	0.0	23.327 .4	3.3
	screw	27.2	28.4	8.9	4.64 .3	0.0	button	1.0	1.0	0.0	$1.0 \quad 1.0$	1.0
	door	86.9	85.6	0.0	28.824 .9	13.5	Stapler body	86.6	96.7	52.4	88.0100 .0	1.0
	StorageFurniture drawer	3.9	4.2	0.0	1.56 .1	8.0	Stapler lid	90.0	91.8	69.8	78.289 .7	36.0
	handle	56.4	57.5	0.0	4.667 .5	11.2	Suitcase handle	25.5	24.2	0.0	12.964 .1	40.8
	door	44.4	49.3	0.0	$\begin{array}{ll}0.0 & 0.0\end{array}$	- 8.2	Suitcase wheel	5.7	2.9	0.0	$3.1 \quad 25.7$	27.5
	drawer	35.7	36.5	0.0	0.011 .3	8.9	Switch switch	7.5	5.6	0.0	21.235 .1	5.6
	Table leg	33.8	27.4	0.0	7.745 .9	38.7	Toaster button	9.0	10.1	0.0	4.531 .4	9.0
	Table tabletop	81.2	82.0	0.0	30.064 .1	65.7	Toaster slider	5.0	5.0	0.0	16.945 .4	0.0
	wheel	1.0	1.3	0.0	1.164 .7	92.6	lid	5.5	6.1	0.0	37.562 .3	11.0
	handle	81.9	80.8	0.0	46.47 .6	5.5	Toilet seat	0.0	0.0	0.0	1.04 .2	1.9
	footpedal	34.8	35.3	0.0	15.310 .0	- 2.3	button	1.0	1.0	0.0	$1.5 \quad 70.3$	18.8
	TrashCan lid	0.0	0.0	0.0	1.037 .8	38.9	USB cap	67.3	75.7	0.0	69.026 .0	23.4
	door	0.0	0.0	0.0	$1.0 \quad 1.0$	1.8	USB rotation	16.3	15.0	0.0	$33.3 \quad 29.7$	0.0
	Overall (17)	41.7	42.4	14.6	21.342 .5	- 20.9	WashingMachine door	25.0	34.3	0.0	41.546 .4	10.9
							WashingMachine button	0.0	0.0	0.0	$1.0 \quad 14.1$	3.0
							Window window	21.2	26.4	0.0	4.315 .6	1.3
							Overall (28)	24.6	25.6	16.8	28.446 .2	16.2
							Overall (45)	31.0	31.9	16.0	25.744 .8	18.0

addition to the 45×8 labeled training shapes, we also utilized 1,906 unlabeled shapes for the semi-supervised learning. We use CoACD [11] to decompose the mesh of each 3D shape into approximate convex components using a concavity threshold of 0.05 , which results in a median of 18
components per shape. Using the decomposition results, we add an auxiliary contrastive loss to the pipeline of PointNet++ as [2]. The auxiliary contrastive loss encourages points within each convex component to have similar features, while points in different components have different
features. For the unlabeled shapes, only the ACD-based contrastive loss is used. For the limited labeled shapes (45×8), both contrastive and original segmentation losses are calculated. To compute the contrastive loss efficiently, we randomly sample 2.5 k out of 10 k points when calculating pairwise contrastive losses.
Prototype Inspired by [14], we also utilize prototype learning to build a few-shot baseline. Specifically, we construct prototype features using the learned point features (by the PointNext backbone, 96 dim) of 360 few-shot shapes. For each part category, we first sample up to 100 point features as the seed features using the furthest point sampling (FPS) in the feature space. We then group the point features into clusters according to their distances to the seed features. We take the average point features of each group to serve as prototype features, which results in 100 prototype features for each part category. For each test shape, we classify each point by finding the nearest prototype features. Note that we only consider prototype features of parts that the object category may have.

S.9. Full Table of Quantitative Comparison

Table S2 and S3 show the full tables of semantic segmentation results. Table S 4 shows the full table of instance segmentation results.

References

[1] Maximilian Denninger, Martin Sundermeyer, Dominik Winkelbauer, Youssef Zidan, Dmitry Olefir, Mohamad Elbadrawy, Ahsan Lodhi, and Harinandan Katam. Blenderproc. arXiv preprint arXiv:1911.01911, 2019. 4
[2] Matheus Gadelha, Aruni RoyChowdhury, Gopal Sharma, Evangelos Kalogerakis, Liangliang Cao, Erik Learned-Miller, Rui Wang, and Subhransu Maji. Label-efficient learning on point clouds using approximate convex decompositions. In European Conference on Computer Vision, pages 473-491. Springer, 2020. 7, 8, 9
[3] Li Jiang, Hengshuang Zhao, Shaoshuai Shi, Shu Liu, Chi-Wing Fu, and Jiaya Jia. Pointgroup: Dual-set point grouping for 3d instance segmentation. In Proceedings of the IEEE/CVF conference on computer vision and Pattern recognition, pages 4867-4876, 2020. 9
[4] Dhruv Mahajan, Ross Girshick, Vignesh Ramanathan, Kaiming He, Manohar Paluri, Yixuan Li, Ashwin Bharambe, and Laurens Van Der Maaten. Exploring the limits of weakly supervised pretraining. In Proceedings of the European conference on computer vision (ECCV), pages 181-196, 2018. 5
[5] Kaichun Mo, Shilin Zhu, Angel X Chang, Li Yi, Subarna Tripathi, Leonidas J Guibas, and Hao Su. Partnet: A large-scale benchmark for fine-grained and hierarchical part-level 3d object understanding. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages 909-918, 2019. 1
[6] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J Guibas. Pointnet++: Deep hierarchical feature learning on point sets in a metric space. Advances in neural information processing systems, 30, 2017. 7, 8
[7] Guocheng Qian, Yuchen Li, Houwen Peng, Jinjie Mai, Hasan Hammoud, Mohamed Elhoseiny, and Bernard Ghanem. Pointnext: Revisiting pointnet++ with improved training and scaling strategies. arXiv:2206.04670, 2022. 1, 7, 8
[8] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual models from natural language supervision. In International Conference on Machine Learning, pages 8748-8763. PMLR, 2021. 3, 5
[9] Nikhila Ravi, Jeremy Reizenstein, David Novotny, Taylor Gordon, Wan-Yen Lo, Justin Johnson, and Georgia Gkioxari. Accelerating 3d deep learning with pytorch3d. arXiv preprint arXiv:2007.08501, 2020. 4
[10] Thang Vu, Kookhoi Kim, Tung M Luu, Thanh Nguyen, and Chang D Yoo. Softgroup for 3d instance segmentation on point clouds. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 2708-2717, 2022. 7, 8, 9
[11] Xinyue Wei, Minghua Liu, Zhan Ling, and Hao Su. Approximate convex decomposition for 3d meshes with collision-aware concavity and tree search. arXiv preprint arXiv:2205.02961, 2022. 9
[12] Fanbo Xiang, Yuzhe Qin, Kaichun Mo, Yikuan Xia, Hao Zhu, Fangchen Liu, Minghua Liu, Hanxiao Jiang, Yifu Yuan, He Wang, et al. Sapien: A simulated part-based interactive environment. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 11097-11107, 2020. 1
[13] Li Yi, Vladimir G Kim, Duygu Ceylan, I-Chao Shen, Mengyan Yan, Hao Su, Cewu Lu, Qixing Huang, Alla Sheffer, and Leonidas Guibas. A scalable active framework for region annotation in 3d shape collections. ACM Transactions on Graphics (ToG), 35(6):1-12, 2016. 4
[14] Na Zhao, Tat-Seng Chua, and Gim Hee Lee. Few-shot 3d point cloud semantic segmentation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 88738882, 2021. 7, 8, 10

[^0]: ${ }^{1}$ PointNext: https://github.com / guochengqian / PointNeXt / blob / master / cfgs / shapenetpart / pointnext-s.yaml, PointNet++: https://github.com/ guochengqian/PointNeXt/tree/master/cfgs/scannet/ pointnet++_original.yaml

