
PartSLIP: Low-Shot Part Segmentation for 3D Point Clouds via Pretrained
Image-Language Models – Supplementary Material

Minghua Liu1, Yinhao Zhu2, Hong Cai2, Shizhong Han2, Zhan Ling1, Fatih Porikli2, Hao Su1

1UC San Diego, 2Qualcomm

S. Supplementary Material

S.1. PartNet-Ensembled Dataset

Table S1 shows the statistics of the proposed PartNet-
Ensembled (PartNetE) dataset. The few-shot and test
shapes come from PartNet-Mobility [12], and the additional
training shapes come from PartNet [5]. All three sets share
consistent part definitions. To construct a diverse, clear, and
consistent 3D object-part dataset, we select a subset of 100
object parts from the original PartNet and PartNet-Mobility
annotations, and manually annotate three additional parts
(i.e., Kettle spout, KitchenPot handle, and Mouse cord).
Specifically, we filter out extremely fine-grained parts (e.g.,
“back frame vertical bar” for chairs), ambiguous parts, in-
consistently annotated parts, and rarely seen parts of the
original datasets. As a result, each object category con-
tains 1-6 parts in our PartNetE dataset, covering both com-
mon coarse-grained parts (e.g., chair back and tabletop) and
fine-grained parts (e.g., wheel, handle, button, knob, switch,
touchpad) that may be useful in downstream tasks such as
robotic manipulation. For shapes from PartNet-Mobility,
they have textures, while for shapes from PartNet, they do
not. The unbalanced data distribution is a critical issue
when using the additional 28k training shapes. We may
have nearly 10k shapes for common categories (e.g., Table)
but only 8 for some non-overlapping categories. We believe
our dataset could benefit future works on low-shot and text-
driven 3D part annotation, which do not rely on large-scale
supervised learning to infer part definitions.

S.2. Real-World Demo

Figure S1 shows more examples when our method and
baseline approaches are applied to point clouds captured
by an iPhone 12 Pro Max equipped with a LiDAR sensor.
Specifically, we utilize the APP “polycam” to scan daily
objects and generate fused point clouds with color. We use
MeshLab to remove ground points and compute point nor-
mals. For baseline approaches, we randomly sample 10,000
points as input.

As shown in the figure, our method can directly gen-
eralize to iPhone-scanned point clouds without significant

domain gaps, while baseline methods perform poorly. For
PointNext [7] of the “45x8+28k” setting (third row), it uses
the additional 28k training data but still fails to recognize
many parts (e.g., cart wheels, trashcan footpedal, lid and
head of the dispenser, chair wheels, suitcase wheels, draw-
ers and handles of the storage furniture, handle of the ket-
tle). The few-shot version (fourth row) performs even worse
and can only identify a few parts.

S.3. Visualization of Ablation Studies

Few-Shot Prompt Tuning Figure S2 shows the compari-
son before and after few-shot prompt tuning. The pretrained
GLIP model (first row) fails to understand the meaning of
many part names. However, after prompt tuning with only
one or a few segmented 3D shapes (second row), the GLIP
model quickly adapts to part definitions and can generalize
to unseen instances.

Multi-View Visual Feature Aggregation Figure S3
shows the comparison with and without multi-view visual
feature aggregation. When there is no multi-view visual
feature aggregation (first row), the GLIP model fails to de-
tect parts from some unfamiliar camera views. However,
after aggregating visual features from multiple views (sec-
ond row), the GLIP model can comprehensively understand
input 3D shapes and make more accurate predictions for
those unfamiliar views.

Variations of Input Point Clouds To evaluate the robust-
ness of our method, we have tried multiple variations of in-
put point clouds (see Table 4 of the main paper). Figure S4
exemplifies 2D images used to generate input point clouds
and point cloud renderings fed to the FLIP model. In the
original setting, we use 6 RGB-D images with a resolution
of 512x512 to generate the fused point cloud, which is then
projected to 10 2D images with a resolution of 800x800.
Note that when point clouds are sparse, we increase the
point size to reduce the artifacts of point cloud renderings.
Please zoom in to find the differences between point cloud
renderings. As shown in Table 4 of the main paper, our
proposed method is robust against various input point cloud
variations.

1



Table S1. The table shows the statistics of the PartNetE dataset: category name, part names, number of few-shot shapes, test shapes, and
additional training shapes (if applicable). The 17 overlapping object categories are bolded.

category parts few-shot test extra-train category parts few-shot test extra-train

Bottle lid 8 49 471 Microwave display, door, handle, button 8 8 234
Box lid 8 20 0 Mouse button, cord, wheel 8 6 0
Bucket handle 8 28 0 Oven door, knob 8 22 0
Camera button, lens 8 29 0 Pen cap, button 8 40 0
Cart wheel 8 53 0 Phone lid, button 8 10 0
Chair arm, back, leg, seat, wheel 8 73 8000 Pliers leg 8 17 0
Clock hand 8 23 593 Printer button 8 21 0
CoffeeMachine button, container, knob, lid 8 46 0 Refrigerator door, handle 8 36 195
Dishwasher door, handle 8 40 179 Remote button 8 41 0
Dispenser head, lid 8 49 0 Safe door, switch, button 8 22 0
Display base, screen, support 8 29 954 Scissors blade, handle, screw 8 39 60
Door frame, door, handle 8 28 237 Stapler body, lid 8 15 0
Eyeglasses body, leg 8 57 0 StorageFurniture door, drawer, handle 8 338 2260
Faucet spout, switch 8 76 681 Suitcase handle, wheel 8 16 0
FoldingChair seat 8 18 0 Switch switch 8 62 0
Globe sphere 8 53 0 Table door, drawer, leg, tabletop, wheel, handle 8 93 9799
Kettle lid, handle, spout 8 21 0 Toaster button, slider 8 17 0
Keyboard cord, key 8 29 165 Toilet lid, seat, button 8 61 0
KitchenPot lid, handle 8 17 0 TrashCan footpedal, lid, door 8 62 358
Knife blade 8 36 505 USB cap, rotation 8 43 0
Lamp base, body, bulb, shade 8 37 3246 WashingMachine door, button 8 9 0
Laptop keyboard, screen, shaft, touchpad, camera 8 47 430 Window window 8 50 0
Lighter lid, wheel, button 8 20 0 45 in total 103 in total 360 1,906 28,367

Figure S1. Real-world demo: iPhone-scanned point clouds (first row), text prompt for our method (second row), results of our method
and baseline approaches (third to fifth rows). “45x8” indicates the few-shot setting, where the model is trained with 8 shapes per object
category. “45x8+28k” indicates the setting where the additional 28k shapes are used for training. Zoom in for details.



Figure S2. Ablation study of few-shot prompt tuning. First row: 2D part detection results of the GLIP pretrained model (zero-shot). Second
row: detection results after 8-shot prompt tuning.

Figure S3. Ablation study of multi-view visual feature aggregation. First row: 2D part detection results without the multi-view visual
feature aggregation. Second row: detection results with the multi-view feature aggregation. Both models are prompt-tuned.

S.4. Text Prompts

In our experiments, our few-shot version (with prompt
tuning) only utilized the concatenation of the part names as
the text prompt (i.e., “arm, back, leg, seat, wheel”). In our
zero-shot experiments, we incorporated the object category
into the text prompt (i.e., “arm, back, leg, seat, wheel of a
chair”). However, we recently found that removing them
(only using part names) can lead to overall better perfor-
mance (mIoU from 27.2 to 34.8 for semantic segmentation).

S.5. CLIP vs. GLIP

We have also considered using other pretrained vision-
language models, such as CLIP [8], to help with part seg-
mentation tasks. However, the CLIP model mainly focuses
on the image classification task and cannot directly generate
region-level output (e.g., 2D segmentation masks or bound-
ing boxes). Moreover, as shown in Figure S5, we find that
the pretrained CLIP model fails to tell whether an object
has a fine-grained part. We conjecture that the CLIP model

is pretrained using image-level supervision, with fewer su-
pervision signals about object parts. In contrast, the GLIP
model is pretrained on 2D detection and grounding tasks
and is thus more sensitive to fine-grained object parts. As
a result, the GLIP model is more suitable for our 3D part
segmentation task.

S.6. Qualitative Comparison on PartNetE

Figure S6 shows the qualitative comparison between
our method and baseline approaches. Our few-shot ver-
sion (45x8) outperforms all existing few-shot methods and
even produces better results than the “45x8+28k” version
of PointNext, where the additional 28k 3D shapes are used
for training. In particular, our method is good at detecting
small object parts (i.e., wheel, bulb, screw, handle, knob,
and button). Without any 3D training, our zero-shot version
also achieves impressive results.



Figure S4. Five variants of input point clouds. For each variant, the first row shows mesh renderings by BlenderProc [1], which are used
to fuse and generate the input point cloud. The resolutions of the images are shown in parentheses. The second row shows renderings
of the input point cloud by Pytorch3D [9], which are fed to the GLIP model. The image resolution is 800x800. Artifacts of point cloud
renderings (last row) can be seen when zoomed in.

S.7. Why not Use ShapeNetSeg?

We acknowledge that ShapeNetSeg [13] is a commonly
used benchmark in prior research. However, we would like

to note that prior studies have used point clouds sampled
from meshes, including interior structures, as input. Our
method, on the other hand, focuses on point clouds fused



Figure S5. We perform binary classification using CLIP [8]. CLIP fails to identify whether an object has a part. Incorrect predictions are
highlighted with red rectangles.

from multiple RGB-D images and cannot handle interior
structures. This makes direct comparison with numbers re-
ported in previous papers difficult. To ensure a fair com-
parison, previous methods would need to be re-run using
the same input format (without interior points). Therefore,
we focus on a consistent and extensive comparison on Part-
NetE, a more suitable benchmark for evaluating the gen-
eralizable part segmentation. PartNetE is larger, with 45
(vs. 16) object categories and finer-grained parts, and cov-
ers most of the categories in ShapeNetSeg. We re-run all
baseline methods using a consistent setting on this more
challenging benchmark to ensure a fair comparison.

S.8. Details of Baselines

We train baseline approaches on our PartNetE dataset.

PointNet++ and PointNext We use PointNext’s official
code base to train PointNet++ and PointNext for seman-
tic segmentation under both the “45x8” and “45x8+28k”
settings, as described in the main paper. Specifically, we
adapt the configurations1 provided by PointNext and ran-
domly sample 10,000 points per shape as the network in-

1PointNext: https : / / github . com / guochengqian /
PointNeXt / blob / master / cfgs / shapenetpart /
pointnext- s.yaml, PointNet++: https://github.com/
guochengqian/PointNeXt/tree/master/cfgs/scannet/
pointnet++_original.yaml

put. We use 148-class segmentation heads for both base-
lines, including 103 part classes and 45 background classes
(one for each object category). For PointNext, we utilize a
c32 model and take point positions, normals and heights as
input. For PointNet++, the model takes point positions and
normals as input.

PointGroup and SoftGroup We use SoftGroup’s official
code base to train PointGroup and SoftGroup for instance
segmentation under both the “45x8” and “45x8+28k” set-
tings, as described in the main paper. Specifically, the train-
ing includes two stages: 1) training a backbone module for
semantic and offset prediction; 2) training the rest modules
while freezing the backbone from stage 1. We randomly
sample (up to) 50k points for each shape and utilize the
point positions and normals as the network input.

For the first stage, there are 104 classes (including 103
part classes and one background class), and points are
highly unbalanced across the classes. To avoid losses be-
ing dominated by several common part classes, we ap-
ply frequency-based class weights, calculated as the in-
verse square root of point frequency [4], to cross-entropy
and offset losses. We also disable data augmentations
(e.g., elastic transform) designed for scene-scale datasets.
The voxel scale for voxelization is set to 100, and the
backbone network is initialized with pretrained checkpoint
hais ckpt spconv2.pth. We train the backbone for

https://github.com/guochengqian/PointNeXt/blob/master/cfgs/shapenetpart/pointnext-s.yaml
https://github.com/guochengqian/PointNeXt/blob/master/cfgs/shapenetpart/pointnext-s.yaml
https://github.com/guochengqian/PointNeXt/blob/master/cfgs/shapenetpart/pointnext-s.yaml
https://github.com/guochengqian/PointNeXt/tree/master/cfgs/scannet/pointnet++_original.yaml
https://github.com/guochengqian/PointNeXt/tree/master/cfgs/scannet/pointnet++_original.yaml
https://github.com/guochengqian/PointNeXt/tree/master/cfgs/scannet/pointnet++_original.yaml


Figure S6. Qualitative comparison between our method and baseline approaches on the PartNetE dataset. Semantic segmentation results
are shown. For baseline approaches, we randomly sample 10,000 points as input. “45x8” indicates the few-shot setting, where the model
is trained with 8 shapes per object category. “45x8+28k” indicates the setting where the additional 28k shapes are used for training .



Table S2. Full table (1/2) of semantic segmentation results on the PartNetE dataset. Category mIoUs are shown. For 17 overlapping object
categories, baseline models leverage additional 28k training shapes in the 45x8+28k setting. For the other 28 non-overlapping object
categories, there are only 8 shapes per object category during training.

O
ve

rl
ap

pi
ng

C
at

eg
or

ie
s

(1
7)

few-shot w/ additional data (45x8+28k) few-shot (45x8) zero-shot

category part PointNet++ [6] PointNext [7] SoftGroup [10] PointNet++ [6] PointNext [7] SoftGroup [10] ACD [2] Prototype [14] Ours Ours

Bottle lid 48.8 68.4 41.4 27.0 67.6 20.8 22.4 60.1 83.4 76.3

Chair

arm 83.5 88.6 89.7 29.5 68.6 67.8 27.6 58.7 74.1 34.6
back 89.0 93.4 92.2 59.7 89.5 86.5 60.6 83.7 89.7 25.3
leg 85.5 94.0 83.5 51.7 70.0 84.9 42.8 73.0 89.0 76.3
seat 85.7 90.5 81.8 61.0 80.8 76.6 53.4 70.9 81.4 75.3

wheel 79.7 92.6 94.4 9.0 16.7 86.6 10.7 67.9 92.6 92.2
Clock hand 19.2 28.4 2.5 0.0 0.0 6.0 0.0 10.5 37.6 26.7

Dishwasher door 59.3 81.5 50.7 55.6 73.9 54.2 50.6 68.6 71.2 20.5
handle 39.6 56.8 55.3 0.0 0.0 30.1 0.0 28.0 53.8 0.0

Display
base 88.1 97.1 94.5 48.9 82.3 50.5 36.9 76.9 97.0 70.1

screen 80.4 87.6 49.6 40.1 78.8 46.1 42.1 73.6 73.9 61.2
support 66.5 83.4 42.3 1.5 0.0 22.6 8.4 51.5 83.4 0.0

Door
frame 48.2 50.0 42.6 22.6 65.6 23.4 23.5 49.1 20.9 1.0
door 60.2 75.7 65.7 38.9 73.3 16.6 33.1 50.1 70.8 7.1

handle 28.6 5.7 51.0 0.0 0.0 8.9 0.0 1.2 30.7 0.0

Faucet spout 80.1 90.4 82.6 31.2 67.2 50.4 31.4 62.1 79.0 12.7
switch 54.3 79.5 54.1 10.8 33.3 18.5 16.9 29.9 63.8 0.9

Keyboard cord 82.3 6.1 78.0 0.0 0.0 57.1 0.0 31.2 83.9 74.6
key 66.7 83.8 39.8 31.5 69.2 50.2 52.2 58.5 23.3 0.0

Knife blade 35.4 58.7 31.3 22.2 59.7 38.3 39.6 50.4 65.2 46.8

Lamp

base 77.5 72.8 92.8 20.5 82.0 48.7 6.0 56.2 90.3 84.5
body 64.5 65.8 78.2 17.5 64.4 40.5 27.3 59.0 79.2 0.0
bulb 51.4 35.2 66.3 0.0 0.0 12.2 0.0 4.4 10.2 12.6

shade 78.5 85.7 91.5 4.1 75.1 52.0 21.5 33.1 84.5 51.3

Laptop

keyboard 66.4 70.4 25.1 22.0 40.6 41.9 20.0 48.3 60.1 48.0
screen 79.0 83.0 33.9 28.4 79.9 42.6 35.5 68.2 62.8 71.2
shaft 27.7 0.0 19.6 0.0 0.0 13.4 0.0 8.7 3.0 0.0

touchpad 27.3 9.1 9.4 0.0 0.0 7.8 0.0 13.6 20.6 11.4
camera 76.6 0.0 4.1 0.0 0.0 0.9 0.0 0.7 2.1 4.5

Microwave

display 25.0 0.0 12.9 0.0 0.0 0.4 0.0 3.3 14.5 5.2
door 63.6 75.4 44.9 25.0 63.9 51.8 26.5 62.0 45.2 39.9

handle 73.1 86.6 84.8 0.0 0.0 33.2 0.0 37.7 95.2 0.0
button 12.5 0.0 10.4 0.0 0.0 5.3 0.0 4.8 15.9 21.3

Refrigerator door 56.5 87.8 43.3 39.2 83.6 39.7 21.5 72.1 58.4 26.3
handle 30.3 64.5 50.4 0.0 0.0 31.0 0.0 13.6 53.1 14.1

Scissors
blade 59.0 82.1 85.2 44.5 72.7 74.0 52.6 45.4 76.8 65.4
handle 78.1 89.8 90.8 65.2 83.4 79.0 64.7 79.7 86.8 0.0
screw 12.8 0.0 52.0 0.0 0.0 14.0 0.0 3.9 17.4 0.0

StorageFurniture
door 64.2 71.9 69.1 25.2 61.9 21.6 22.5 54.7 56.4 45.8

drawer 65.6 80.8 43.9 0.0 0.0 17.0 0.3 26.7 33.0 26.4
handle 10.9 52.8 67.6 0.0 0.0 18.0 0.0 9.2 71.4 16.2

Table

door 71.7 14.5 33.6 0.0 0.0 0.0 0.0 0.0 0.0 24.7
drawer 42.3 55.6 41.0 8.3 35.0 29.1 22.0 24.9 35.3 35.0

leg 67.3 85.0 64.4 15.8 15.4 45.7 17.7 53.7 66.4 56.4
tabletop 80.2 93.8 74.7 19.7 82.2 55.0 41.1 74.5 79.7 77.7
wheel 80.0 51.8 58.9 0.0 0.0 0.0 0.0 0.0 61.0 87.1
handle 40.9 11.8 56.3 0.0 0.0 19.4 0.0 1.2 12.3 5.2

TrashCan
footpedal 82.3 0.0 1.4 0.0 0.0 0.9 0.0 37.7 0.0 2.4

lid 55.5 68.5 49.7 4.0 59.6 26.9 0.0 60.9 64.8 63.5
door 77.4 0.0 0.0 0.9 0.0 0.0 0.0 0.0 2.1 24.5

Overall (17) 55.6 58.5 50.2 18.1 39.2 32.8 19.2 41.1 56.3 31.8

200 epochs with a batch size of 16. We apply cosine learn-
ing rate attenuation starting from epoch 45 with an initial
learning rate of 0.001.

In the second stage, we train the remaining modules for
instance segmentation, while freezing the trained backbone
from the first stage. We train the networks with a batch size
of 4 and an initial learning rate of 0.004. Since the original

code is evaluated on indoor segmentation, we empirically
tuned the parameters. Specifically, for the “45x8” setting,
the grouping radius, mean active, and classification score
threshold are set to 0.02, 50, and 0.001, respectively. For
the “45x8+28k” setting, the grouping radius, mean active,
and classification score threshold are set to 0.01, 300, and
0.01, respectively. In the “45x8+28k” setting, the few-shot



Table S3. Full table (2/2) of semantic segmentation results on the PartNetE dataset. Category mIoUs are shown. For 17 overlapping object
categories, baseline models leverage additional 28k training shapes in the 45x8+28k setting. For the other 28 non-overlapping object
categories, there are only 8 shapes per object category during training.

N
on

-O
ve

rl
ap

pi
ng

C
at

eg
or

ie
s

(2
7)

few-shot w/ additional data (45x8+28k) few-shot (45x8) zero-shot

category part PointNet++ [6] PointNext [7] SoftGroup [10] PointNet++ [6] PointNext [7] SoftGroup [10] ACD [2] Prototype [14] Ours Ours

Box lid 18.6 84.2 8.8 24.5 69.4 24.1 21.1 68.8 84.5 57.5
Bucket handle 0.0 4.1 25.0 0.0 0.0 18.9 0.0 31.3 36.5 2.0

Camera button 0.0 0.0 12.6 0.0 0.0 13.9 0.0 6.0 43.2 14.2
lens 13.0 66.4 34.6 19.4 51.9 43.3 20.2 58.0 73.4 28.6

Cart wheel 6.4 36.3 23.9 11.6 47.7 40.8 31.5 36.8 88.1 87.7

CoffeeMachine

button 32.6 0.0 2.4 0.0 0.0 4.3 0.0 0.7 6.4 6.3
container 29.0 25.8 4.6 7.6 23.0 25.5 2.8 25.9 51.1 27.3

knob 32.6 3.6 8.2 0.0 0.0 1.3 0.0 7.8 32.6 17.5
lid 44.0 42.3 17.8 11.2 45.0 27.6 0.0 45.7 61.2 50.3

Dispenser head 18.0 20.7 18.3 6.9 34.1 42.8 22.0 45.2 60.4 25.0
lid 6.1 31.2 19.5 7.0 11.0 43.0 16.7 61.6 87.1 7.9

Eyeglasses body 77.2 93.0 77.8 85.8 94.1 74.5 82.6 81.7 84.8 0.6
leg 75.1 83.2 67.0 71.8 84.6 70.9 73.7 74.0 91.7 3.0

FoldingChair seat 10.9 96.4 14.7 63.4 94.9 89.0 74.2 91.2 86.3 91.7
Globe sphere 46.5 92.3 59.0 51.4 88.8 85.1 69.8 88.3 95.7 34.8

Kettle
lid 16.2 24.5 46.9 21.4 54.7 60.2 22.9 58.9 78.8 30.9

handle 16.2 71.3 56.8 33.8 73.1 60.1 43.7 73.6 73.5 31.4
spout 30.2 39.6 68.5 30.5 53.7 61.8 54.0 55.5 78.6 0.0

KitchenPot lid 25.9 79.6 49.1 44.1 80.1 66.8 69.9 76.1 77.7 4.8
handle 5.7 34.3 41.9 19.3 51.8 42.7 33.8 50.5 61.5 4.6

Lighter
lid 52.4 38.4 32.0 33.6 39.9 40.5 32.3 42.8 69.9 69.1

wheel 15.0 10.5 24.3 0.8 0.0 35.3 0.0 15.4 57.9 27.8
button 37.6 0.0 34.2 0.0 0.0 43.7 0.0 34.0 66.3 9.3

Mouse
button 3.0 0.8 20.2 0.0 2.7 4.8 0.0 0.1 16.2 1.6
cord 33.3 65.0 41.0 0.0 0.0 53.2 0.0 40.7 66.5 65.4

wheel 0.0 0.0 70.8 0.0 0.0 31.9 0.0 19.4 49.4 14.0

Oven door 32.3 75.6 17.2 38.9 73.5 49.7 17.8 68.3 73.1 66.1
knob 36.4 0.0 10.1 0.0 0.0 21.5 0.0 4.7 73.9 0.0

Pen cap 42.7 53.3 26.3 8.8 45.4 40.5 10.8 34.0 68.4 29.2
button 50.3 25.6 31.4 0.0 21.0 52.1 0.0 61.0 74.6 0.0

Phone lid 40.0 78.7 0.3 10.3 66.7 2.0 19.7 68.3 74.0 48.5
button 0.0 0.2 4.4 0.0 0.0 8.2 0.0 2.6 22.8 23.7

Pliers leg 57.7 99.6 74.2 99.3 99.6 91.2 83.5 91.0 33.2 5.4
Printer button 0.0 0.0 1.2 0.0 0.0 1.6 0.0 0.2 4.3 0.8
Remote button 3.6 57.8 37.1 0.0 0.5 37.5 0.0 29.6 38.3 11.5

Safe
door 14.0 76.7 9.8 32.7 67.0 24.8 28.0 51.9 64.5 34.5

switch 13.6 0.0 5.8 0.0 0.0 21.7 0.0 5.8 27.9 4.3
button 68.2 0.0 0.4 0.0 0.0 0.0 0.0 2.7 4.1 28.4

Stapler body 58.3 91.4 83.4 30.4 91.1 83.9 49.8 83.0 93.6 2.1
lid 44.9 85.7 76.8 45.7 83.3 80.5 50.2 78.4 76.0 39.6

Suitcase handle 6.3 9.3 30.0 6.7 28.9 30.7 26.4 38.9 84.1 23.4
wheel 75.0 17.8 6.6 0.0 0.0 28.9 0.0 32.1 56.7 57.0

Switch switch 1.8 39.7 21.0 9.3 42.9 31.8 10.3 40.9 59.4 9.5

Toaster button 23.5 2.7 36.6 0.0 0.0 17.7 0.0 9.0 58.7 27.6
slider 5.9 14.0 16.2 0.0 0.0 11.8 0.0 11.2 61.3 0.0

Toilet
lid 19.5 49.4 12.7 9.4 68.5 27.9 53.4 56.8 72.6 35.0
seat 62.3 0.0 2.9 0.0 0.0 6.2 0.0 0.1 21.3 15.4

button 16.4 0.0 23.2 0.0 0.0 7.6 0.0 1.6 67.6 11.4

USB cap 54.9 67.2 61.6 21.1 79.7 73.9 11.4 72.6 58.1 21.7
rotation 49.8 68.6 26.6 35.7 61.7 38.1 38.9 58.1 50.7 0.0

WashingMachine door 1.1 54.5 25.8 8.9 37.9 40.0 20.2 55.4 63.3 19.3
button 0.0 0.0 22.4 0.0 0.0 5.0 0.0 6.7 43.6 5.6

Window window 26.3 83.3 39.2 62.6 83.2 66.4 66.8 76.6 75.4 5.2

Overall (28) 25.4 45.1 30.7 21.8 41.5 41.1 25.6 46.3 61.3 24.4

Overall (45) 36.8 50.2 38.1 20.4 40.6 38.0 23.2 44.3 59.4 27.2

shapes are repeated 50 times in each epoch to mitigate the
unbalanced data issue. The PointGroup is trained using a
similar pipeline to SoftGroup, except using one-hot seman-
tic results from the first-stage backbone instead of softmax

results.

ACD Inspired by [2], we utilize an auxiliary self-
supervised task to aid few-shot learning. Specifically, in



Table S4. The full table of instance segmentation results on the PartNetE dataset. Category mAP50s (%) are shown. For 17 overlapping
object categories, baseline approaches leverage additional 28k training shapes in the 45x8+28k setting. For the other 28 non-overlapping
object categories, there are only 8 shapes per object category during training.

O
ve

rl
ap

pi
ng

C
at

eg
or

ie
s

category part
45x8+28k few-shot (45x8) zero-shot

N
on

-O
ve

rl
ap

pi
ng

C
at

eg
or

ie
s

category part
45x8+28k few-shot (45x8) zero-shot

Point Soft Point Soft Ours Ours Point Soft Point Soft Ours Ours
Group [3] Group [10] Group [3] Group [10] Group [3] Group [10] Group [3] Group [10]

Bottle lid 38.2 43.9 8.0 22.4 79.4 75.5 Box lid 7.2 8.6 15.8 19.7 77.2 24.2

Chair

arm 94.6 95.1 35.9 71.0 67.7 23.9 Bucket handle 1.5 1.6 1.0 1.1 18.2 5.9
back 82.0 73.2 83.8 93.7 95.4 30.0 Camera button 1.0 1.5 4.5 6.1 33.8 11.9
leg 88.6 93.6 92.2 89.9 78.1 30.3 lens 16.1 0.0 5.0 16.4 39.9 4.9
seat 75.0 85.9 81.4 88.1 85.5 88.9 Cart wheel 29.2 28.4 28.5 29.8 83.3 79.3

wheel 98.0 97.7 92.8 95.9 95.5 99.3

CoffeeMachine

button 1.0 1.0 1.1 0.0 2.2 1.8
Clock hand 1.0 1.0 1.0 1.0 14.9 4.2 container 2.5 4.0 13.6 19.7 32.8 7.1

Dishwasher door 76.7 75.0 50.6 55.6 57.4 22.5 knob 5.6 5.0 3.3 1.5 13.5 7.2
handle 55.6 56.4 1.0 26.4 32.9 0.0 lid 3.3 1.4 8.9 22.6 27.6 19.5

Display
base 95.2 97.4 13.2 22.1 94.2 58.3 Dispenser head 27.5 29.2 39.1 45.4 46.4 13.7

screen 46.0 55.4 32.9 49.2 70.7 40.5 lid 20.5 23.6 22.4 30.2 80.6 5.0
support 54.0 53.2 4.1 11.1 84.0 0.0 Eyeglasses body 31.7 39.5 28.1 34.7 79.5 1.0

Door
frame 36.8 28.3 2.7 9.8 2.8 1.0 leg 68.0 62.7 50.3 56.3 84.9 1.2
door 32.4 34.3 7.5 5.9 30.7 3.0 FoldingChair seat 16.8 16.8 86.4 79.0 76.7 87.0

handle 1.0 1.0 1.0 1.0 20.3 0.0 Globe sphere 63.1 63.1 80.2 75.7 81.0 18.3

Faucet spout 85.4 86.3 50.7 52.4 61.7 3.1
Kettle

lid 64.0 64.4 65.8 70.0 76.1 30.9
switch 74.5 72.5 11.2 22.2 47.6 1.5 handle 51.4 54.3 45.0 59.0 78.1 22.9

Keyboard cord 42.6 39.7 34.3 21.3 68.6 25.0 spout 68.5 72.6 45.4 61.3 71.9 1.0
key 37.2 37.7 16.1 1.0 12.3 1.0 KitchenPot lid 68.3 68.5 81.4 87.1 91.5 1.0

Knife blade 19.3 27.2 15.6 10.3 43.9 22.1 handle 50.6 50.1 32.5 44.3 49.5 1.3

Lamp

base 64.3 71.1 8.5 17.9 89.9 87.2
Lighter

lid 30.7 30.7 0.0 40.6 45.8 24.1
body 48.6 36.5 4.3 11.0 87.4 1.0 wheel 6.0 5.3 0.0 47.9 34.3 16.6
bulb 54.5 59.2 7.1 1.9 5.9 5.9 button 64.1 67.8 0.0 63.2 23.6 1.8

shade 83.5 86.4 19.4 47.0 90.1 49.0
Mouse

button 1.0 1.0 0.0 0.0 1.7 1.7

Laptop

keyboard 0.0 0.0 40.1 53.8 53.4 42.5 cord 1.0 1.0 0.0 1.0 66.3 66.3
screen 1.0 1.0 36.3 61.5 48.5 59.5 wheel 83.2 83.2 0.0 53.7 50.5 8.9
shaft 1.2 3.5 1.0 0.0 2.0 0.0 Oven door 26.5 31.9 0.0 19.1 54.9 36.4

touchpad 0.0 0.0 0.0 0.0 19.7 9.9 knob 1.0 1.0 0.0 1.6 74.1 15.4
camera 0.0 0.0 0.0 0.0 1.0 0.0 Pen cap 48.2 44.4 0.0 44.3 51.6 7.8

Microwave

display 4.2 1.0 0.0 1.0 6.3 1.0 button 16.9 16.9 0.0 10.9 37.9 1.0
door 62.6 57.1 0.0 31.0 34.4 19.3 Phone lid 1.0 1.1 0.0 1.2 37.8 12.0

handle 1.0 1.0 0.0 0.0 60.4 0.0 button 1.0 1.0 0.0 1.0 26.6 2.8
button 100.0 100.0 0.0 22.8 3.2 4.0 Pliers leg 28.2 40.4 6.8 14.5 4.7 5.9

Refrigerator door 57.1 54.2 0.0 23.2 31.3 14.3 Printer button 1.0 1.0 0.0 0.0 1.3 1.0
handle 19.3 17.2 0.0 9.7 39.7 8.6 Remote button 23.4 22.5 0.0 6.2 23.1 3.5

Scissors
blade 6.2 6.5 4.5 3.0 14.1 4.2

Safe
door 11.0 12.3 0.0 19.4 68.4 28.7

handle 82.0 82.9 41.9 34.5 58.4 0.0 switch 4.8 5.4 0.0 23.3 27.4 3.3
screw 27.2 28.4 8.9 4.6 4.3 0.0 button 1.0 1.0 0.0 1.0 1.0 1.0

StorageFurniture
door 86.9 85.6 0.0 28.8 24.9 13.5 Stapler body 86.6 96.7 52.4 88.0 100.0 1.0

drawer 3.9 4.2 0.0 1.5 6.1 8.0 lid 90.0 91.8 69.8 78.2 89.7 36.0
handle 56.4 57.5 0.0 4.6 67.5 11.2 Suitcase handle 25.5 24.2 0.0 12.9 64.1 40.8

Table

door 44.4 49.3 0.0 0.0 0.0 8.2 wheel 5.7 2.9 0.0 3.1 25.7 27.5
drawer 35.7 36.5 0.0 0.0 11.3 8.9 Switch switch 7.5 5.6 0.0 21.2 35.1 5.6

leg 33.8 27.4 0.0 7.7 45.9 38.7 Toaster button 9.0 10.1 0.0 4.5 31.4 9.0
tabletop 81.2 82.0 0.0 30.0 64.1 65.7 slider 5.0 5.0 0.0 16.9 45.4 0.0
wheel 1.0 1.3 0.0 1.1 64.7 92.6

Toilet
lid 5.5 6.1 0.0 37.5 62.3 11.0

handle 81.9 80.8 0.0 46.4 7.6 5.5 seat 0.0 0.0 0.0 1.0 4.2 1.9

TrashCan
footpedal 34.8 35.3 0.0 15.3 0.0 2.3 button 1.0 1.0 0.0 1.5 70.3 18.8

lid 0.0 0.0 0.0 1.0 37.8 38.9 USB cap 67.3 75.7 0.0 69.0 26.0 23.4
door 0.0 0.0 0.0 1.0 1.0 1.8 rotation 16.3 15.0 0.0 33.3 29.7 0.0

Overall (17) 41.7 42.4 14.6 21.3 42.5 20.9 WashingMachine door 25.0 34.3 0.0 41.5 46.4 10.9
button 0.0 0.0 0.0 1.0 14.1 3.0

Window window 21.2 26.4 0.0 4.3 15.6 1.3
Overall (28) 24.6 25.6 16.8 28.4 46.2 16.2

Overall (45) 31.0 31.9 16.0 25.7 44.8 18.0

addition to the 45 × 8 labeled training shapes, we also uti-
lized 1,906 unlabeled shapes for the semi-supervised learn-
ing. We use CoACD [11] to decompose the mesh of each
3D shape into approximate convex components using a con-
cavity threshold of 0.05, which results in a median of 18

components per shape. Using the decomposition results,
we add an auxiliary contrastive loss to the pipeline of Point-
Net++ as [2]. The auxiliary contrastive loss encourages
points within each convex component to have similar fea-
tures, while points in different components have different



features. For the unlabeled shapes, only the ACD-based
contrastive loss is used. For the limited labeled shapes
(45 × 8), both contrastive and original segmentation losses
are calculated. To compute the contrastive loss efficiently,
we randomly sample 2.5k out of 10k points when calculat-
ing pairwise contrastive losses.

Prototype Inspired by [14], we also utilize prototype
learning to build a few-shot baseline. Specifically, we con-
struct prototype features using the learned point features (by
the PointNext backbone, 96 dim) of 360 few-shot shapes.
For each part category, we first sample up to 100 point fea-
tures as the seed features using the furthest point sampling
(FPS) in the feature space. We then group the point fea-
tures into clusters according to their distances to the seed
features. We take the average point features of each group
to serve as prototype features, which results in 100 proto-
type features for each part category. For each test shape, we
classify each point by finding the nearest prototype features.
Note that we only consider prototype features of parts that
the object category may have.

S.9. Full Table of Quantitative Comparison

Table S2 and S3 show the full tables of semantic seg-
mentation results. Table S4 shows the full table of instance
segmentation results.

References
[1] Maximilian Denninger, Martin Sundermeyer, Dominik Winkel-

bauer, Youssef Zidan, Dmitry Olefir, Mohamad Elbadrawy, Ah-
san Lodhi, and Harinandan Katam. Blenderproc. arXiv preprint
arXiv:1911.01911, 2019. 4

[2] Matheus Gadelha, Aruni RoyChowdhury, Gopal Sharma, Evange-
los Kalogerakis, Liangliang Cao, Erik Learned-Miller, Rui Wang,
and Subhransu Maji. Label-efficient learning on point clouds using
approximate convex decompositions. In European Conference on
Computer Vision, pages 473–491. Springer, 2020. 7, 8, 9

[3] Li Jiang, Hengshuang Zhao, Shaoshuai Shi, Shu Liu, Chi-Wing Fu,
and Jiaya Jia. Pointgroup: Dual-set point grouping for 3d instance
segmentation. In Proceedings of the IEEE/CVF conference on com-
puter vision and Pattern recognition, pages 4867–4876, 2020. 9

[4] Dhruv Mahajan, Ross Girshick, Vignesh Ramanathan, Kaiming He,
Manohar Paluri, Yixuan Li, Ashwin Bharambe, and Laurens Van
Der Maaten. Exploring the limits of weakly supervised pretrain-
ing. In Proceedings of the European conference on computer vision
(ECCV), pages 181–196, 2018. 5

[5] Kaichun Mo, Shilin Zhu, Angel X Chang, Li Yi, Subarna Tripathi,
Leonidas J Guibas, and Hao Su. Partnet: A large-scale benchmark
for fine-grained and hierarchical part-level 3d object understanding.
In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pages 909–918, 2019. 1

[6] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J Guibas.
Pointnet++: Deep hierarchical feature learning on point sets in a
metric space. Advances in neural information processing systems,
30, 2017. 7, 8

[7] Guocheng Qian, Yuchen Li, Houwen Peng, Jinjie Mai, Hasan Ham-
moud, Mohamed Elhoseiny, and Bernard Ghanem. Pointnext: Re-
visiting pointnet++ with improved training and scaling strategies.
arXiv:2206.04670, 2022. 1, 7, 8

[8] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh,
Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell,
Pamela Mishkin, Jack Clark, et al. Learning transferable visual mod-
els from natural language supervision. In International Conference
on Machine Learning, pages 8748–8763. PMLR, 2021. 3, 5

[9] Nikhila Ravi, Jeremy Reizenstein, David Novotny, Taylor Gordon,
Wan-Yen Lo, Justin Johnson, and Georgia Gkioxari. Accelerating
3d deep learning with pytorch3d. arXiv preprint arXiv:2007.08501,
2020. 4

[10] Thang Vu, Kookhoi Kim, Tung M Luu, Thanh Nguyen, and Chang D
Yoo. Softgroup for 3d instance segmentation on point clouds. In
Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 2708–2717, 2022. 7, 8, 9

[11] Xinyue Wei, Minghua Liu, Zhan Ling, and Hao Su. Approximate
convex decomposition for 3d meshes with collision-aware concavity
and tree search. arXiv preprint arXiv:2205.02961, 2022. 9

[12] Fanbo Xiang, Yuzhe Qin, Kaichun Mo, Yikuan Xia, Hao Zhu,
Fangchen Liu, Minghua Liu, Hanxiao Jiang, Yifu Yuan, He Wang,
et al. Sapien: A simulated part-based interactive environment. In
Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 11097–11107, 2020. 1

[13] Li Yi, Vladimir G Kim, Duygu Ceylan, I-Chao Shen, Mengyan Yan,
Hao Su, Cewu Lu, Qixing Huang, Alla Sheffer, and Leonidas Guibas.
A scalable active framework for region annotation in 3d shape col-
lections. ACM Transactions on Graphics (ToG), 35(6):1–12, 2016.
4

[14] Na Zhao, Tat-Seng Chua, and Gim Hee Lee. Few-shot 3d point
cloud semantic segmentation. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages 8873–
8882, 2021. 7, 8, 10


	. Supplementary Material
	. PartNet-Ensembled Dataset
	. Real-World Demo
	. Visualization of Ablation Studies
	. Text Prompts
	. CLIP vs. GLIP
	. Qualitative Comparison on PartNetE
	. Why not Use ShapeNetSeg?
	. Details of Baselines
	. Full Table of Quantitative Comparison


