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The content of our supplementary material is organized
as follows:

• Effect of Dynamic Weight Average in our framework.

• Compare with different backbones in our framework.

• Effect of different pose extractors

• Transfer learning

• Visualization of different features.

• Visualization of reconstructed faces with different fea-
tures.

• Visualization of self-supervision results on different
downstream tasks.

• Detailed description of the backbone B, two subnets
and reconstruction network D.

1. Additional Ablation Experiments
1.1. Effect of Dynamic Weight Average

In order to adaptively balance the learning of Lpose and
Lface in our PCL, we employ the Dynamic Weight Average
(DWA) [7] to obtain the αpose and αface during the multi-
task training. The dynamic weights αpose and αface can be
calculated as:

αk(t) =
Kexp(ωk(t− 1)/T )∑

i exp(ωi(t− 1)/T )
, ωk(t− 1) =

Lk(t− 1)

Lk(t− 2)
,

(1)
where the αk(t) represents the weight αpose of pose-related
contrastive learning or the weight αface of face contrastive
learning in Eq.(7) of our paper at the t − th epoch. T rep-
resents a temeprature which controls the softness of task
weighting, and K represents the number of tasks (K=2 in
this study). Through properly training with DWA, our PCL
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adaptively introduces pose and face information according
to the learning objective, thus obtaining the best learning
performance. Table 1 shows the comparison of the results of
DWA and manual weighting. Notely, in the manual weight-
ing, we constrain αface = 1 − αpose, where αpose = 0
represents that PCL only contains pose-unrelated face con-
trastive learning. Obviously, the result demonstrates that
our PCL with DWA training achieved the better learning
performance than the other learning schemes.

Figure 1. The dynamic learning procedure of the αpose and αface

during training.

In addition, Fig 1 presents the learning procedure of the
αpose and αface via DWA during training. At the beginning
of training, the pose task had the smaller weight due to its
fast convergence rate. As training went on, the facial task
weight decreased while the pose weight increased, because
the DWA attempted to slow down the task that are learned
quickly for more balanced learning. When the learning con-
verged, the dynamic weights of the facial expression and
pose reached stability, so that promoting both two tasks si-
multaneously.
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Table 1. Comparison of DWA and manual weighting in PCL on
the RAF-DB dataset.

αpose 0 0.01 0.1 DWA
Acc(%) 73.24 72.52 73.96 74.47

Figure 2. The pose-related and pose-unrelated facial features in
2D space by t-SNE visualization

Table 2. Comparison of different backbones. We conducted FER
on the FER2013 dataset, facial recognition on the LFW dataset,
and AU detection on the DISFA dataset.

Backbone Params(M) FER(Acc.) Facial Recognition(Acc.) AU detection(F1)
FaceCycleBackbone [1] 3.06 56.81 79.72 54.8

ResNet-18 [4] 11.18 52.3 79.6 40.57
ResNet-34 [4] 21.28 52.1 76.68 37.96

1.2. Comparison of Different Backbones

Table 2 reports model parameters, accuracy (Acc.) and
F1 score of three different backbones used in our PCL for
different facial tasks. Obviously, the deeper backbone de-
grades the performance. The possible reason is that the
deeper backbone tends to be overfitting during training of
the pretext task, resulting in a decrease in generalizability
for the downstream linear evaluation tasks.

1.3. Effect of Different Pose Extractors

As shown in Table 3, we used cGAN [8] and an off-
the-shelf 2D face alignment method TP-GAN [5] stead of
our proposed PDD to generate images with different poses.
Our PDD outperformed the cGAN and TP-GAN by 18.97%
and 2.76%, respectively. Additionally, we also tried to use
vanilla GAN [3], however, the vanilla GAN cannot ensure
the generation of the desired pose. The possible reason is
that the generator that tries to fool the discriminator may
make the distribution of features bias in CL.

Table 3. The effects of different pose extractors.

cGAN [8] TP-GAN [5] PDD
FER(RAF-DB) 55.50 71.71 74.47

Table 4 shows the effects of different L1 loss used in

Table 4. Ablation study of the impact of integrating different
losses in face transformation of PDD on the RAF-DB dataset.

Different L1 loss used in PDD FER Accuracy(%)
||s−D(F⃗f̂ , F⃗p)||1 73.57
||ŝ−D(F⃗f , F⃗p̂)||1 73.50
||s−D(F⃗f̂ , F⃗p)||1 + ||ŝ−D(F⃗f , F⃗p̂)||1 73.37
||s−D(F⃗f̂ , F⃗p)||1 + ||s−D(F⃗f , F⃗p)||1 73.83
||ŝ−D(F⃗f , F⃗p̂)||1 + ||s−D(F⃗f , F⃗p)||1 73.31
||s−D(F⃗f̂ , F⃗p)||1 + ||ŝ−D(F⃗f , F⃗p̂)||1 + ||s−D(F⃗f , F⃗p)||1 74.22
||s−D(F⃗f̂ , F⃗p)||1 + ||ŝ−D(F⃗f , F⃗p̂)||1 + ||s−D(F⃗f , F⃗p)||1 + ||ŝ−D(F⃗f̂ , F⃗p̂)||1 74.47

PDD. Obviously, stricter constraints work best. We conjec-
ture that adding a series of loss constraints make the PDD
reconstruct more accurate faces, thus obtaining more effec-
tive facial representation.

1.4. Transfer Learning

We evaluate transfer learning performance on RAF-DB
and LFW with fine-tuning. As shown in Table. 5, our PCL
outperforms supervised learning. The result can be demon-
strated our method is practical and advantageous.

Table 5. Comparison of transfer learning performance.

Method FER(RAF-DB) Face recognition (LFW)
Fully-Supervised 80.41 81.14
FaceCycle 80.48 77.96
SimCLR 82.30 78.20
Ours 82.43 83.09

2. Visualization

2.1. Visualization of Different Features

Fig. 2 visualized the pose-related features F⃗p and pose-
unrelated facial features F⃗f in a 2D feature space by using
the t-SNE [9] on RAF-DB, demonstrating that our method
can effectively separate pose-related features from pose-
unrelated facial features.

In Fig. 3, we visualized the SimCLR [2], the face-aware
features F⃗s, and pose-unrelated facial features F⃗f in a 2D
feature space by using the t-SNE on the RAF-DB dataset, as
well as the pose-related features F⃗p on the multi-view BU-
3DFE dataset. From the Fig. 3(a), the facial features learned
by SimCLR cannot distinguish two categories on the fea-
ture sphere space (e.g., Happy and neutral) well. As shown
in Fig. 3(b) and Fig. 3(c), the feature distances of differ-
ent expression categories on F⃗s are larger than those of F⃗f

on the feature sphere space for contrast learning, indicating
that the face-aware features F⃗s containing pose information
has better distinguishability than F⃗f and SimCLR. Fig. 3(d)
shows the distribution of the learned pose-related features
F⃗p, indicating that gp(·) in our PCL can learn effectively
the detailed pose information.
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Figure 3. The features learned by SimCLR and our PCL respectively in t-SNE feature visualization. (a) The facial feature learned by
SimCLR for FER (RAF-DB). (b) F⃗s extracted from backbone B for FER (RAF-DB). (c) F⃗f extracted from gf (·) for FER (RAF-DB). (d)
F⃗p extracted from gp(·) for pose estimation (BU-3DFE).

2.2. Visualization of Reconstructed Faces

Fig. 4 visualized several reconstructed faces with pose-
related and pose-unrelated facial features disentangled by
our method. As shown in Fig. 4(b) and (c), our PCL can
reconstructed the same faces with different poses according
to varied pose-related features and the same pose-unrelated
facial features. Fig. 4(d) shows the reconstructed frontal
faces with the pose-unrelated facial features F⃗f from the
image s. Additionally, as shown in Fig. 4(e) and (f), we
used pose-related features from the image s and its pose-
flipped image ŝ. We can observe that the generated images
only include varied pose information with few face patterns.

2.3. Prediction Examples on Different Downstream
Tasks

Fig. 5 shows the prediction results of our method on the
three downstream tasks, i.e., facial expression recognition,
AU detection and facial recognition. From the results, one
can see that the PCL can accurately predict the results on
different tasks, even for hard samples.

3. Detailed Network Structures

3.1. Backbone and Subnets

Fig. 6 presents the network architecture of the backbone
B and its two separating subnets in our PCL. Referring to
FaceCycle [1], we adopt a shallow backbone that consists
of ten convolutional blocks, two channel attention blocks,
and two residual basic blocks. The channel attention mod-
ule was inspired from self-attention [10], and we just used
it to compute relations between channels rather than spatial
pixels. The subnet contains four layers, i.e., two 3× 3 con-
volutional layer and two leakyReLU as activation function.
The size of input is 4096 and the size of output is 2048.
Additionally, we adopt leakyReLU with leakage 0.1 as the

activation function in the backbone B and subnet.

3.2. Reconstruction Network

Inspired by [6], we used the 6-layer CNN as our recon-
struction network D. Fig. 7 presents the detailed network
architecture of the D. D contains five generator blocks and
an output block. The generator block consists of ReLU, bi-
linear upsampling, 3 × 3 conv, and batch-norm. The only
difference between the output block and the generator block
is that the last layer of the output block is a tanh function.

References
[1] Jia-Ren Chang, Yong-Sheng Chen, and Wei-Chen

Chiu. Learning facial representations from the cycle-
consistency of face. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages
9680–9689, 2021. 2, 3

[2] Ting Chen, Simon Kornblith, Mohammad Norouzi,
and Geoffrey Hinton. A simple framework for con-
trastive learning of visual representations. In Interna-
tional conference on machine learning, pages 1597–
1607. PMLR, 2020. 2

[3] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza,
Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron
Courville, and Yoshua Bengio. Generative adversar-
ial nets. Advances in neural information processing
systems, 27, 2014. 2

[4] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep residual learning for image recognition.
In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 770–778, 2016.
2

[5] Rui Huang, Shu Zhang, Tianyu Li, and Ran He. Be-
yond face rotation: Global and local perception gan



(a) image s (b) �⃗�𝐹�̂�𝑓 + �⃗�𝐹𝑝𝑝 (c) �⃗�𝐹𝑓𝑓+ �⃗�𝐹�𝑝𝑝 (e) �⃗�𝐹𝑝𝑝 (f) �⃗�𝐹�𝑝𝑝(d) �⃗�𝐹𝑓𝑓

Figure 4. The reconstructed faces with disentangled pose-unrelated facial and pose-related features. (a) Source image s, (b)-(f) the
reconstructed faces with different features. F⃗f : pose-unrelated facial feature from s, F⃗p: pose-related feature from s, F⃗f̂ : pose-unrelated
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Figure 5. Examples of self-supervision prediction on different downstream tasks. (a) Facial expression recognition task. (b) AU detection
task. (c) Facial recognition task.
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Figure 6. The network architecture of the backbone B and subnets.
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Figure 7. The network architecture of the reconstruction network
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