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Appendices
Here we provide details and extended experimental re-

sults omitted from the main paper for brevity. Sec. 1 gives
hyperparameters of PoseExaminer used for testing and fine-
tuning HPS algorithms. Sec. 2 contains extended experi-
mental evaluations. Sec. 3 gives more visualization results.
Sec. 4 and Sec. 5 provide details to generate the synthetic
3DPW dataset and to filter out wrong annotations from the
AIST++ dataset. Sec. 6 provides pseudocodes of PoseEx-
aminer, and Sec. 7 discusses limitations and future work.

1. Hyperparameters of PoseExaminer
In our main paper, we use three sets of hyperparameters

that are corresponding to three different difficulty levels.
Standard. We use human clothing ID 1 (see Fig. 1) and
plain white background. We set adversarial threshold T =
90, and the limits of global rotation along the Y/X/Z-axis
are ±0.02π,±0.02π,±0.02π, respectively. The searching
boundary of policy πω is [−2, 2]. The standard difficulty
level is used to evaluate the robustness of current methods
towards articulated poses, shape, lighting, and occlusion.
For other evaluation experiments such as clothing, back-
ground, and global rotation, we change the corresponding
factor (e.g. the human texture ID, or the limits of global ro-
tation) and keep the rest.
Easy. We use the 5 most distinguishable human cloth-
ing and the 10 most distinguishable backgrounds (see the
project page). We set adversarial threshold T = 80 and the
searching boundary of policy πω is [−1.5, 1.5]. The lim-
its of global rotation along the Y/X/Z-axis are 0,±0.05π, 0,
respectively. PoseExaminer with the easy difficulty level
generates good performance when it is used to fine-tune the
model tested on the 3DPW dataset.
Hard. We use 12 hardly distinguishable human clothing
and the 5 most difficult backgrounds (see the project page).
We set adversarial threshold T = 90 and the searching
boundary of policy πω is [−3, 3]. The limits of global rota-
tion along the Y/X/Z-axis are ±0.4π,±0.05π,±0.05π, re-
spectively. PoseExaminer with the hard difficulty level gen-
erates good performance when it is used to fine-tune the

real cAIST-EXT sync cAIST-EXT

MPJPE↓ PA-MPJPE↓ MPJPE↓ PA-MPJPE↓
SPIN [2] 133.7 81.0 124.1 (-9.6) 76.7 (-4.3)
PARE [1] 117.5 72.7 111.4 (-6.1) 69.2 (-3.5)

Table 1. Measuring the performance gap of SPIN and PARE on
real and synthetic cAIST-EXT datasets. Real cAIST-EXT only
has pseudo labels while the synthetic version directly uses ground-
truth human meshes. Therefore, the annotations of sync cAIST-
EXT are very accurate, but on the real cAISt-EXT, the annotations
are less accurate. This difference increases the performance gap.
Nonetheless, the performance gap between real and synthetic are
not large and even favorable towards the synthetic data.

model tested on the cAIST and cAIST-EXT dataset.
Mixed. To achieve good performance on both IID and OOD
datasets, we mix these three difficulty levels during fine-
tuning. Specifically, in the first two epochs, we use the easy
PoseExaminer, and in the following two epochs, we use the
standard one to search for failure modes, and in the rest
epochs, we use the hard one.

2. Extended Experiments
2.1. Performance Gap between Real and Synthetic

cAIST-EXT datasets

We provide the results of SPIN and PARE on real and
synthetic cAIST-EXT datasets in Tab. 1. Both methods
achieve similar performance on the real and synthetic ver-
sions. They even achieve better performance on the syn-
thetic one. One reason for this is that the real cAIST-EXT
only has pseudo labels that are less accurate, while the syn-
thetic cAIST-EXT has accurate labels since the images are
directly rendered using the ground-truth human meshes. In
short, the performance gap is small enough that the syn-
thetic data can be used to evaluate the performance of an
HPS method trained on real images.

2.2. Ablation on Number of Samples

Note that the HPS model is usually an end-to-end deep
network of which the performance is unexplainable, and the
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Pnae minMPJPE maxMPJPE meanMPJPE medianMPJPE

50 samples 0.8% 199.69 213.52 151.97 149.31
200 samples 1.30% 81.81 300.76 150.06 148.23
5000 samples 1.32% 79.43 305.52 150.41 148.30

Table 2. Ablation on number of samples. 200 samples give very
similar results compared with 5000 samples.

20% AMASS 50% AMASS 100% AMASS Physical limits

Region Size 1.738 2.649 3.212 3.948
meanMPJPE 114.05 130.67 139.21 150.06

Table 3. Robustness of PARE under different joint ranges. We
report region size and meanMPJPE here.

sync 3DPW PoseExaminer

MPJPE↓ PA-MPJPE↓ PVE↓ Succ. Rate↓ Region Size↓ meanMPJPE↓
ID 1 78.3 52.0 93.2 74.2% 3.822 150.76
ID 17 80.0 54.5 92.8 82.0% 4.540 155.94
ID 22 81.4 53.3 95.0 80.5% 4.010 153.58
ID 25 84.3 55.0 98.9 88.2% 4.632 160.16
ID 31 80.9 52.7 94.5 82.8% 4.681 156.49

Table 4. Robustness towards clothing. Here we show results
on the five most representative clothing (Fig. 1). Although human
clothing makes little difference in simple poses, the robustness of
PARE still decreases when less distinguishable clothes (e.g. ID25)
are used. However, in general, compared to other factors, PARE
is relatively robust towards common clothing with no adversarial
noises.

pose space is extremely high-dimensional. Therefore, in our
paper, to better understand and evaluate the failure modes,
we use uniform sampling to learn the property of each sub-
space. We made an additional ablation in Tab. 2 regarding
the number of required samples, and observe that 200 sam-
ples per subspace already provide a good estimate of the
properties of a failure mode.

2.3. Ablation on Joint Ranges

So far, when studying the robustness to OOD poses, we
only consider the physical limits. It will generate many un-
common poses. One way to address this issue is to set dif-
ferent joint ranges for searching, from a very small region
that only includes very common poses to bigger ranges that
also contain unusual poses. We made an additional exper-
iment (Tab. 3) where we estimate the pose distribution in
the AMASS dataset, and set joint ranges that cover 20%,
50%, and 100% poses respectively. However, we want to
emphasize the importance of testing uncommon poses, as
algorithms must be robust to such edge cases in practice.

2.4. Robustness towards Clothing, Lighting, Back-
ground and Global Rotation

Clothing. To study the robustness of PARE to human cloth-
ing, we first design a preliminary experiment. 40 high-

Figure 1. Visualizations of 5 human clothing.

sync 3DPW PoseExaminer

MPJPE↓ PA-MPJPE↓ PVE↓ Succ. Rate↓ Region Size↓ meanMPJPE↓
−0.7 102.6 75.3 129.3 93.4% 6.254 184.26
−0.5 88.5 62.8 110.9 91.8% 5.366 170.15
−0.3 87.2 55.5 107.2 88.3% 4.423 168.37
−0.1 85.3 53.0 104.5 88.9% 4.675 171.75
0.1 82.3 51.8 98.6 83.7% 4.369 155.75
0.3 79.6 51.7 94.5 78.9% 4.045 156.11
0.5 79.4 52.1 94.3 80.1% 4.247 160.42
1.3 79.5 53.3 93.5 85.4% 4.403 158.45
2.3 78.9 53.2 93.8 87.4% 4.361 165.22

Table 5. Robustness towards lighting. We generate images with
different lighting intensities (Fig. 2). Compared with normal expo-
sure (underline), PARE is relatively robust to overexposure (blue)
but less so to underexposure (red).

quality UV maps are selected to generate human meshes
with different clothes. Then we directly generate 40 syn-
thetic 3DPW datasets, one for each UV map. The left half
of Tab. 4 shows the results on the 5 most representative tex-
tures (Fig. 1). If we only consider common clothing with no
(adversarial) noises added to them, the textures we selected
do not make a large difference.

Then we study the robustness of current methods to hu-
man clothing in extreme/hard poses. Since we do not di-
rectly optimize the parameters that are used to generate UV
maps, we use our PoseExaminer to learn weaknesses re-
garding articulated poses but with different UV maps. The
results are provided in the right half of Tab. 4. Although
clothing makes little difference in simple poses, certain
poses can be difficult in some clothes but simple in oth-
ers. With less distinguishable clothes, the robustness of cur-
rent methods will decrease. However, in general, compared
to other factors, PARE is robust towards common clothing
with no adversarial noises.
Lighting. Same to clothing, we study the robustness of cur-
rent methods towards lighting in two manners: on synthetic
3DPW and on PoseExaminer. We generate images with dif-
ferent lighting intensities (Fig. 2) and test PARE on them.
The results are provided in Tab 5. PARE is relatively robust
to overexposure but less so to underexposure.
Background. Same to clothing, we study the robustness of
current methods towards different backgrounds using syn-
thetic 3DPW and on PoseExaminer. We show the results
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Figure 2. Visualizations of different lighting intensities.

sync 3DPW PoseExaminer

MPJPE↓ PA-MPJPE↓ PVE↓ Succ. Rate↓ Region Size↓ meanMPJPE↓
ID 1 81.87 55.41 98.41 88.3% 4.816 168.48
ID 13 84.43 58.63 102.98 89.8% 4.817 172.45
ID 46 80.52 52.67 94.52 87.5% 4.456 156.21
ID 73 80.51 51.61 94.24 80.4% 4.314 153.95
ID 108 119.94 77.65 148.84 96.1% 6.900 227.57

Table 6. Robustness towards background. We show results on
five background images here (Fig. 3). PARE is robust and per-
forms well on common background images with no adversarial
noises (ID 1, 13, 46, and 73). But it is still sensitive to crowded
scenes (ID 108) even the input images are tightly cropped around
the person.

Figure 3. Visualizations of 5 background images.

on five representative background images (Fig. 3) in Tab. 6.
Current HPS methods such as PARE are still sensitive to
crowded scenes (ID 108), even when ground-truth bounding
boxes are provided and the input images are tightly cropped
around the person. However, in general, PARE is robust and
performs well on other common background images with
no adversarial noises (ID 1, 13, 46, and 73).
Global Rotation. We use PoseExaminer to study the ro-
bustness by optimizing the global rotation and articulated
pose simultaneously. However, we found that there exists a
global maximum for each direction of global rotation. For
example, for the rotation along the Y-axis, the larger the ro-
tation angle, the more serious self-occlusion can happen.
Therefore, to avoid the algorithm converging to poses in
which the subject is nearly back to the camera and stand-

Succ. Rate↓ Region Size↓ meanMPJPE↓
0 74.2% 3.822 150.76

Y-axis

± 1/4 π 75.5% 3.687 144.25
± 1/2 π 80.3% 4.024 158.34
± 3/4 π 84.1% 4.630 166.46
± π 90.4% 5.041 175.82

X-axis ± 1/4 π 93.2% 5.868 177.56
± 1/2 π 96.2% 6.904 214.61

Z-axis ± 1/4 π 88.2% 4.756 170.64
± 1/2 π 92.7% 5.131 175.38

Table 7. Robustness towards global rotation. Human orientation
(Y-axis) can cause self-occlusion, leading to large errors. PARE is
also sensitive to camera angles, including up-down angle (X-axis)
and tilt angle (Z-axis).

ing upside down. We set different limits of joint angles for
experiments, and study only one direction every time. The
results are provided in Tab. 7. Human orientation can cause
self-occlusion, leading to large errors. PARE is also sensi-
tive to camera angles (up-down angle and tilt angle).

3. Visualization Results
Occlusion. We visualize several failure modes of PARE
caused by occlusion in Fig. 4. As we mentioned in the main
paper, PARE is robust towards occlusion in simple and IID
poses. However, in some hard poses, even minor occlusion
can cause large errors.
Failure Modes of PARE. We visualize several failure
modes of PARE discovered by PoseExaminer in Fig. 5.
PoseExaminer is able to find a variety of failure modes that
are realistic and cause large 2D and 3D errors.

4. Generating Synthetic 3DPW Dataset
Fig. 6 provides a step-by-step illustration to generate the

synthetic 3DPW dataset. It has six steps:

(a) Use the state-of-the-art video instance segmentation
method (IDOL [6]) to generate the mask of humans.

(b) Use the image imprinting method (LAMA [4]) to fill
in the gaps left by the removal of the person to get the
background image.

(c) Use ground-truth labels to render human mesh onto the
background image.

(d) Use instance segmentation method (IDOL) to get the
mask of synthetic human.

(e) Compute the overlap of the masks of real human and
synthetic human

(f) Use the texture of the object on the synthetic image to
restore the occlusions.

3



Figure 4. Robustness towards occlusion. PARE is designed to
handle occlusion and it performs well on simple poses with oc-
clusion. However, when considering more complex poses, a small
occluder may still cause large errors.

We also follow the same steps (step a - c) to generate
synthetic cAIST-EXT. Note that step d, e, and f are omitted
since images in cAIST-EXT do not include occlusions.

5. Filtering out Wrong Annotations from the
AIST++ Dataset

The AIST++ [3, 5] dataset contains pseudo labels gener-
ated from nine cameras surrounding the subjects. The anno-
tations are relative accurate for simple poses. However, for
some extreme or hard poses, the annotations are incorrect
(Fig. 7). We filter out the images with incorrect annotations
in three step:

(1) We find that the 2D keypoint annotations are much
more accurate than the 3D keypoint annotations, and
the latter is more accurate than the SMPL annotations.
therefore, we use the SMPL annotations to regress 3D
keypoints, and then project them into 2D to get 2D key-
points. Then we check the consistency between the pro-
vided 2D annotations and the regressed 2D keypoints,
as well as the provided 3D keypoint annotations and the
regressed 3D keypoints.

(2) We find that the main error comes from 3D estimation,
or more specifically, depth estimation. For most images
with correct 3D annotations, the SMPL annotations are
broadly right. However, there exists some 3D skele-
tons that have wrong annotations on the depth of some

joints. These wrong 3D skeletons, or more specifically,
the abrupt changes along the depth direction, give in-
correct SMPL parameters. Therefore, we check the
smoothness of depth estimations and filter out the im-
ages with annotations that contain discontinuous depth
estimates or impossible depth ranges.

(3) The third constraint we use is the 3D joints on the face.
Unlike other parts of the human body, such as arms that
have a large range of motion, joints on the face, such as
the eyes and nose, usually have a relatively fixed posi-
tion. However, their estimates are also error-prone due
to the self-occlusion. Therefore, we check the position
of joints on the face and filter out the images with an-
notations that have impossible distances between face
joints.

After that, we randomly select 1K images and check the
SMPL labels to ensure that the remaining images have cor-
rect annotations. Then we get a clean AIST++ dataset and
name it cAIST.

6. Pseudocode

We provide the pseudocode of phase 1 (Algo. 1) and
phase 2 (Algo. 2) of PoseExaminer, and the pseudocode of
fine-tuning HPS methods with PoseExaminer (Algo. 3) as
follows.

Algorithm 1 : Finding the worst-case poses

Require: πωi : policy, H:a given HPS model, S: simulator,
f :VPoser decoder, Ψi: other controllable parameters.
Initialize baseline b = 0.5
for t = 1, 2, ... do

Sample K latent parameters zi ∼ πωi(zi)
Generate K pose parameters θia = f(zi)
Render K images Ii = S(θia,Ψ

i)
Test H on Ii and obtain mean error erri2D,t,err

i
3D,t

if 1
10

∑t
j=t−9 err

i
3D,t > T then

Terminate and output ωi

end if
Compute rewards R(zi)← c− erri2D
Compute mean population distance D(πωi , πωb)
Update ωi by gradient descent for maximizing
L(ωi) = Ezi∼πωi

[R(zi)]+1{i ̸=b}γE[D(πωi , πωb)]

Update baseline b← (1− τ)b+ τR(zi)
end for

7. Limitations and Future Work

PoseExaminer finds the failure modes with a simulator.
Our experimental results show that the current model can
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Figure 5. Failure modes of PARE discovered by PoseExaminer. Our examiner finds a variety of failure modes on articulated pose that
are realistic and cause large 2D errors.

already find failure modes in the synthetic space that gener-
alize well and fool models in real images, providing mean-
ingful observations. We also demonstrate that these simu-
lated images significantly improve the performance of cur-
rent SOTA methods on real-world data. However, more re-
alistic simulators are always helpful, but they may require
additional rendering time. In the near future, we plan to ex-
plore more advanced simulators to further narrow down the

domain gap with real data.

Currently, our work mainly focuses on one factor.
Specifically, we study the robustness of HPS methods to-
wards articulated pose, shape, and global rotation sepa-
rately. However, when we optimize multiple factors at the
same time, one factor usually dominates the others. For ex-
ample, as previously mentioned, if we study the global ro-
tation and the articulated pose at the same time, the global
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(a) (b) (c) (d) (e) (f)

Figure 6. Generating synthetic 3DPW dataset. We give a detailed introduction to each step in Sec. 4.

Figure 7. Incorrect Annotations in AIST++ dataset. Each group
of images contains the original image on the left and the corre-
sponding annotation on the right.

Algorithm 2 : Determining boundaries of the failure modes

Require: θia: adversarial point, H:a given HPS model, S:
simulator, Ψi: other controllable parameters.
Initialize ϕi

up = ϕi
low = 0⃗, δ = 0.05

for t = 1, 2, ... do
Select joint j and sample m poses θia,j ∼ U(·)
Render m images Ii = S(θia,j ,Ψ

i)

Test H on Ii and obtain minimum error erri3D
if erri3D > T then

Check pose possibility and update the boundary of
rotation directions of joint j that yield valid pose:
ϕi
up,j ← ϕi

up,j + δ or ϕi
low,j ← ϕi

low,j + δ

Update δ ← min{0.001×(erri−T )+0.005, 0.05}
end if

end for

rotation will quickly converge to a maximum that has a very
extreme viewpoint before the articulated pose converges,
which makes the information we learn about the articulated
pose less useful. To solve this issue, our current solution is
to set limits to the global rotation. In the near future, we will
study the solution for optimizing multiple non-independent
and biased factors.

Algorithm 3 : Fine-tuning with PoseExaminer

Require: E: pose examiner, H: a given HPS model, L:
ordered list of hyperparameters, T : original training set.
Initialize F ← ∅
for loop = 1, 2, ... do

Initialize E with a group for hyperparameters in L
Test H with E, get weakness regionsR
Sample m examples {f} fromR, F ← F ∪ {f}
Fine-tune H on F and T with ϵ-sample for one epoch

end for
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