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A. Proof of the Proposition
A.1 Proof of Proposition 1

Proposition 1. For stronger augmentations Â, i.e., A ⊆ Â,
augmented views have smaller intra-domain connectivity as
Ĉα := Ed∼PS

D
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[Â(x+
i |xi)Â(x+

j |xj)].

Proof. Without loss of generality, we consider two given
samples xi and xj belonging to the same domain, i.e., di =
dj . For a given data augmentation set A, we first define the
augmented distance between two samples as the maximum
distance between their augmented views as
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Since vanilla augmentations are included in strong aug-
mentations, i.e., A ⊆ Â, we have the inequality as
dÂ
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)
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. Correspondingly, we have

the supremum of the distance of two augmented view sets
as
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, we have VÂ ≥ VA.

Then we define the overlap of two distributions as
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Since VÂ ≥ VA, we have ϕÂ ⊆ ϕA. Then for a given data
augmentation set A, we define the minimum product of two
augmented samples as
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Since vanilla augmentations are included in strong aug-
mentations, i.e., A ⊆ Â, we have the inequality as
eÂ
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. We assume the mean of

the product value in the overlap part of distributions as a
constant multiple of the minimum product. Then we have
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Since eÂ
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and ϕÂ ⊆ ϕA,
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Thus, we draw the conclusion Ĉα < Cα.

A.2 Proof of Proposition 2

Proposition 2. Dual nearest neighbors can increase the
intra-class connectivity as Ĉβ := Ey∼PS

Y
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xi,xj∼P
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[A(x+
i |xi)A(NN (xj)

+|NN (xj))], where Ĉβ > Cβ .
More accurate cross domain NN and more diverse in-
domain NN can further increase intra-class connectivity.

Proof. To calculate the intra-class connectivity, we first di-
vide all the samples into two parts: intra-domain intra-
class samples and cross-domain intra-class samples. Corre-
spondingly, the intra-class connectivity can be calculated as
the sum of cross-domain intra-class connectivity and intra-
domain intra-class connectivity.
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Without loss of generality, we consider two given samples
xi and xj belonging to the different domains with the same



semantic class, i.e., di ̸= dj and yi = yj . Given a data aug-
mentation set A, we define the overlap of two distributions
as

ϕdi ̸=dj
≜ Supp(A(x+

i | xi))
⋂

Supp(A(x+
j | xj))

(S-11)
For a given data augmentation set A, transformations

cannot overcome significant distribution shifts across differ-
ent domains, e.g., one can hardly transform a cat in sketch
to photo. Thus, we have ϕdi ̸=dj

≃ ∅.
While we search for cross domain nearest neighbors

(NN) in the latent embedding space as the positive sample.
Denote the nearest neighbors of xj in domain i as Ni(xj).
We have the overlap of distributions as

ϕ̂N
di ̸=dj

≜ Supp(A(x+
i | xi))

⋂
Supp(A(N(xj)

+ | N(xj)))

(S-12)
Since Ni(xj) is in the same domain with xi with similar se-
mantic information, the augmentation overlap exists. Then,
we have ϕ̂N

di ̸=dj
> ∅ and ϕ̂N
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> ϕdi ̸=dj . Thus, we have

Ey∼PS
Y
E
xi,xj∼P

SUL
y,di ̸=dj

[A(x+
i |xi)A(NN (xj)

+|NN (xj))]

> Ey∼PS
Y
E
xi,xj∼P

SUL
y,di ̸=dj

[A(x+
i |xi)A(x+

j |xj)] (S-13)

Besides, we consider two given samples xi and xj be-
longing to the same domains with the same semantic class,
i.e., di = dj and yi = yj . Similarly, we have the dis-
tribution overlap as ϕ̂di=dj . Though ϕdi=dj > ∅, the
overlap is limited by some intra-domain intra-class seman-
tic variances. Comparably, our intra-domain nearest neigh-
bors (NN) can overcome intra-domain variances with the
increased overlap as ϕ̂N
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. Thus, we have
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Combined with Eq. (S-13), we have
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Totally, we draw the conclusion Ĉβ > Cβ .
For more accurate cross domain NN, since the searched

neighbors are more likely to belong to the same semantic
class, the searched N ′

i(xj) share more similar semantic in-
formation with xi, which results in a larger augmentation

overlap as ϕ̂N ′
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For more diverse in-domain NN, since the searched
neighbors are more likely to overcome more severe intra-
domain variances, the searched N ′

i(xj) can lead to a larger
augmentation overlap as ϕ̂N ′
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> ϕ̂N
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. Thus, we have
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Combined with Eq. (S-16), we can draw the conclusion
that more accurate cross domain NN and more diverse in-
domain NN can further increase the intra-class connectiv-
ity.

A.3 Proof of Proposition 3

Proposition 3. Our proposed CD2NN is more accurate
than cross domain NN in the UDG setting.

Proof. Denote ecr as the error rate of the cross domain near-
est neighbor and ein as the error rate of the in-domain near-
est neighbor. For simplicity, we assume the error rate of the
second nearest neighbor is also ecr and ein for cross domain
and in-domain, respectively. We assume when the nearest
neighbor is wrong, it is equally likely to match to any one
of the remaining C−1 classes, where C is the total number
of classes.

Considering a given query z, the error rate of the vanilla
cross domain NN is Pvanilla = ecr.

For our proposed CD2NN strategy shown in Figure 3,
if R1 ̸= ∅, i.e., our CD2NN selects the NN in R1. The
selected NN is wrong only if the following two conditions
are met: 1) The cross domain NN of z is wrong; 2) The in-
domain NN zqinnn of z is right and cross domain NN of zqinnn
is wrong or the in-domain NN zqinnn of z is wrong and the
cross domain NN of zqinnn is not in the same class as z. Thus,
the error rate of our CD2NN is

PR1
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= ecr ·

(
(1− ein) · ecr + ein · (1− ecr + ecr ·

C − 2

C − 1
)

)
= ecr ·

(
(1− ein) · ecr + ein · (1− ecr ·

1

C − 1
)

)
< ecr · ((1− ein) · ecr + ein) . (S-18)

Then, we have

PR1

CD2NN < ecr · (ecr + ein − ecr · ein) . (S-19)



Since 0 < ecr < 1 and 0 < ein < 1, we have

ecr+ein−ecr ·ein−1 = (ecr−1) ·(1−ein) < 0. (S-20)

Thus, ecr + ein − ecr · ein < 1 and ecr ·
(ecr + ein − ecr · ein) < ecr. Since Pvanilla = ecr, from
Equation (S-19), we have:

PR1

CD2NN < ecr ·((1− ein) · ecr + ein) < Pvanilla. (S-21)

As shown in Figure 3, if R1 = ∅ and R2 ̸= ∅, i.e., our
CD2NN selects the NN in R2. The selected NN is wrong
only if the following two conditions are met: 1) The cross
domain NN of z is wrong; 2) The cross domain NN zqcrnn of
z is right and in-domain NN of zqcrnn is wrong or the cross
domain NN zqcrnn of z is wrong and the in-domain NN of
zqcrnn is not in the same class as z. Thus, the error rate of our
CD2NN is

PR2
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(
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Similarly, we have

PR2

CD2NN < ecr · (ein + ecr − ecr · ein) , (S-23)

Since 0 < ecr < 1 and 0 < ein < 1, we have

ein+ecr−ecr ·ein−1 = (ecr−1) · (1−ein) < 0 (S-24)

Thus, ein + ecr − ecr · ein < 1 and ecr ·
(ein + ecr − ecr · ein) < ecr. Since Pvanilla = ecr, from
Equation (S-23), we have: and

PR2

CD2NN < ecr ·((1− ecr) · ein + ecr) < Pvanilla. (S-25)

Totally, since PR1

CD2NN < Pvanilla and PR2

CD2NN < Pvanilla,
we have PCD2NN < Pvanilla. Thus, we show theoretically
that Our proposed CD2NN is more accurate than cross do-
main nearest neighbor in this specific domain generalization
setting.

B. More Visualizations
B.1 Intra-class connectivity of our method.

We add analysis from the connectivity perspective. This
experiment is conducted without the in-domain cycle NN
to evaluate the performance of CD2NN. Specifically, we
train the unsupervised model on PACS with three strate-
gies, i.e., in-domain NN, vanilla cross domain NN and our
CD2NN, respectively, and compute the corresponding intra-
class connectivity. Fig. S-1 shows that our CD2NN can in-
crease the intra-class connectivity as the training proceeds.

Vanilla cross domain NN selection strategy suffers the lim-
ited intra-class connectivity gain due to many wrong NN
matches brought by domain shifts. In-domain NN selection
strategy achieves satisfactory intra-class connectivity at the
beginning of training by clustering more accurate in-domain
neighbors. However, in-domain NN selection strategy fails
to overcome distribution shifts across domains and cannot
align intra-class samples from different domains, which suf-
fers the degraded intra-class connectivity eventually.

Figure S-1. Intra-class connectivity for the model trained with in-
domain NN, vanilla cross domain NN and our CD2NN strategy.

B.2 Nearest neighbors searched by our CD2NN.

In Fig. S-2, we showcase the domain invariant capabil-
ities of the feature representation learned without supervi-
sion using our DN2A approach. Each example shows the
top-5 nearest neighbors of a random query image (from the
PACS dataset) searched in the entire set of images of each
of the four different PACS domains: Photo, Art painting,
Cartoon and Sketch. All images are encoded using our self-
supervised model trained on three domains (Art painting,
Cartoon and Sketch) of PACS dataset.

C. More Experiments
C.1 Experiments on Open Domain Generalization

We follow the open domain generalization setting, i.e.,
the class split for each domain, in DAML [13] to conduct
experiments on PACS dataset. We train the model on the
unlabeled source data using SimCLR and our DN2A with
the same experimental setting in the main text. Besides, we
also conduct unsupervised pre-training based on ImageNet
initialization (as seen in the bottom half of Table S-1). Then
we use the parameters of the trained model as the initial-
ization for the SOTA open domain generalization method
DAML [13].

As shown in Table S-1, DAML benefits from unsuper-
vised pre-training. Compared with the random initializa-



Figure S-2. Nearest neighbors searched by our DN2A method.



Art Sketch Photo Cartoon Avg
Method Acc H-score Acc H-score Acc H-score Acc H-score Acc H-score
DAML(random init.) [13] 26.20 17.04 24.81 21.04 21.89 16.42 39.92 20.26 28.21 18.69
SimCLR + DAML 35.07 25.91 42.61 31.53 28.33 23.86 48.65 31.66 38.67 28.24
Ours + DAML 43.86 37.30 56.42 51.09 40.67 32.37 62.81 46.54 50.94 41.83
DAML(ImageNet init.) [13] 54.10 43.02 58.50 56.73 75.69 53.29 73.65 54.47 65.49 51.88
Ours† + DAML 62.75 49.16 69.96 61.91 76.06 59.11 76.26 61.59 71.26 57.94

Table S-1. Results with different initialization methods under the open-domain setting on PACS. † indicates that the unsupervised pre-
training is based on ImageNet initialization.

Method
Office: Target Acc. on 1-shot / 3-shots

A→D A→W D→A D→W W→A W→D Avg
CDS [9] 48.3 / 65.9 49.2 / 65.5 61.4 / 64.4 77.5 / 90.4 57.4 / 64.4 71.5 / 93.0 60.9 / 73.9
PCS [16] 60.2 / 78.2 69.8 / 82.9 76.1 / 76.4 90.6 / 94.1 71.2 / 76.3 91.8 / 96.0 76.6 / 84.0

PCS w/o APCU & MIM 47.2 / 71.1 52.7 / 70.6 59.0 / 75.5 76.4 / 90.3 58.5 / 74.1 66.9 / 91.8 60.1 / 78.9
Ours 50.8 / 72.4 54.9 / 71.2 65.1 / 69.7 77.6 / 90.8 62.6 / 71.9 71.5 / 93.1 63.8 / 78.2

Table S-2. Target accuracy (%) on few-shot domain adaptation with source 1-shot and 3-shots labels per class on the Office dataset.

tion and ImageNet initialization, our method can improve
DAML for 22.73% and 6.50% average accuracy, respec-
tively. Compared with SimCLR, our DN2A provides a
much stronger initialization and boosts the generalization
ability of DAML with a 12.27% improvement in average
accuracy and a 13.59% improvement in average H-score,
demonstrating the effectiveness of our method in the open-
set DG setting.

Open-set DG setting assumes different source domains
contain private classes and shared classes. With our pro-
posed DN2A, samples in different domains from the shared
classes can be aligned. For open-set samples in private
classes of some domains (no cross domain neighbors of
the same class), our proposed cross domain double-lock
NN selection strategy can filter out these untrustworthy
noisy neighbors not used as positive samples, i.e., R =
∅. With positive samples generated by strong augmenta-
tion to suppress the domain information, our method learns
class-semantic similarity by separating visually dissimilar
images, and eventually separates the private classes from
the shared classes. Totally, our method can align shared
classes in different source domains, while separating shared
classes from private classes. Thus, our proposed method
can achieve good performance for the challenging open-set
DG setting.

C.2 Experiments on Few-shot Domain Adaptation

We follow the few-shot domain adaptation protocol de-
fined in [16] with the same data split, where the source
domain has a single or three labeled images per class and
the remaining images are provided as unlabeled. Follow-

ing [9, 16], we use the Resnet-50 pretrained on ImageNet
as the backbone, and use 1 or 3 source domain samples per
class for the source-only training.

As shown in Table S-2, our method outperforms CDS by
2.7% average accuracy for 1-shot adaptation. CDS assumes
samples of the same class are closer than other samples of
different classes across different domains, and directly ap-
plies the cross domain matching, which suffers from false
matches and introduces the noise to compromise the fi-
nal performance. As an end-to-end framework proposed
for domain adaptation, PCS aims to learn a model that
could achieve high accuracy on the target domain. Thus,
PCS achieves the highest accuracy with adaptive prototyp-
ical classifier learning (consisting of Adaptive Prototype-
Classifier Update (APCU) and Mutual Information Maxi-
mization (MIM)) for the target domain. We also take the
result without APCU and MIM from [16] for a relatively
fair comparison of the cross domain self-supervised learn-
ing strategy itself. Our method outperforms by 3.7% aver-
age accuracy for 1-shot adaptation. The proposed instance-
prototype cross domain matching [16] also suffers from the
matching noise and degrades the performance.

C.3 Comparison with MIM-based Methods

Recently, mask image modeling-based methods [4,8,15]
have made growing progress. Table S-4 shows DN2A
significantly outperforms MIM-based models with various
portions of labeled data. For example, with 10% labeled
data, our DN2A outperforms MAE by 33.41% accuracy and
DiMAE by 6.55%, respectively. With 1% labeled data, our
DN2A outperforms MAE by 30.93% accuracy and DiMAE



Operation ShearX(Y) TranslateX(Y) Rotate AutoContrast Identity Equalize
Mag Range [-0.3,0.3] [-0.3,0.3] [-30,30] 0 or 1 0 or 1 0 or 1

Operation Solarize Posterize Contrast Color Brightness Sharpeness
Mag Range [0,256] [4,8] [0.05,0.95] [0.05,0.95] [0.05,0.95] [0.05,0.95]

Table S-3. Various augmentations we applied to strongly augment the training images.

Label Fraction MAE [8] DiMAE [15] DN2A (Ours)
1% 24.89 34.23 55.82
5% 28.77 40.91 62.89

10% 31.79 58.65 65.20

Table S-4. Accuracy on PACS compared with MAE and DiMAE.

Photo Art. Cartoon Sketch Avg.
Baseline+SA 53.77 34.08 40.64 48.58 44.27
+GT Positive 68.19 50.24 56.52 61.17 59.03
+GT Negative 57.82 38.03 44.89 51.06 47.95
Ours DN2A 67.84 44.06 53.98 57.43 55.82
+GT Negative 69.14 45.91 55.83 58.22 57.27
+FNE 68.26 44.38 53.95 57.72 56.08

Table S-5. Ablation study on the impact of negative samples.

by 21.59%, respectively. Experimental results demonstrate
that our DN2A is more effective than MIM-based methods
in learning domain-invariant features using unlabeled data.

C.4 Discussion on Noisy Negative Samples

To evaluate the impact, we select negatives from truly
different classes using ground-truth (GT) labels and show
in Table S-5 that GT Negative improves performance by
mitigating noise. However, the impact of GT Positive is
much greater than GT Negative. In fact, the success of
contrastive learning relies heavily on positives [6,14] rather
than negatives, where positives are crucial for learning se-
mantic invariance while negatives serve to avoid model col-
lapse. Thus, we focus on positive selection. Moreover, our
dual NN can improve the robustness by making same-class
embeddings closer (GT Negative achieves a slight gain). To
further mitigate the noise of negatives, we utilize our dual
NNs as queries to search their in-domain NNs in the mini-
batch as False Negatives and Eliminate them from comput-
ing the loss. Table S-5 shows FNE yields performance gain.

C.5 Discussion on Strong Augmentation

Fig. S-3(b) shows intra-domain connectivity decreases
as we strengthen the family of augmentations by includ-
ing more functions, which is consistent with Proposition 1.
Thus, we use all functions in the PIL library to build strong
augmentation. We design augmentations to ensure low
intra-domain connectivity to facilitate contrastive learning

Figure S-3. INCE and Cα v.s accuracy with data augmentations.

T (epoch) Photo Art. Cartoon Sketch Avg.
0 61.32 39.59 46.17 51.92 49.75

50 66.09 42.35 51.83 55.61 53.97
100 67.84 44.06 53.98 57.43 55.82
200 67.41 44.17 52.81 56.59 55.25

Table S-6. Ablation study on T with kNN accuracy.

rather than rely on domain shift that is subtle and unknown
in target domain. Augmentations like Color and Sharpness
destroy the color and texture information and are closely
related to domain bias, whereas less-related augmentations
like Rotation also reduce the connectivity for better perfor-
mance (0.47% accuracy loss w/o Rotation in Fig. S-3(b)).

Besides, Mutual information I can measure the amount
of information shared by positives. We use INCE as a neu-
ral proxy to estimate I . Fig. S-3(a) shows the amount of
shared information decreases as we strengthen the family
of augmentations. Thus, we deem strong augmentations as
augmentation with a certain low level of shared informa-
tion that can prevent the failure of contrastive learning. In
fact, intra-domain connectivity shares the same trend with
INCE in indicating strong augmentations. For general pur-
poses, we use all label-preserving augmentations in the PIL
library. As mentioned in Limitations, specific augmenta-
tions related to the dataset (e.g., style transfer) may further
reduce the shared information for better performance.

C.6 Ablation on Hyperparameters

Hyperparameter T controls the epoch to introduce the
contrastive loss of positives generated by our dual NNs. Ta-
ble S-6 shows the performance is best at T = 100 but de-
graded at T = 0 due to noisy neighbors in random initial-
ization and at T = 200 due to late introduction of NN as
positives.



D. Related Works

D.1 Unsupervised Domain Adaptation (UDA)

UDA aims to transfer the knowledge from a labeled
source domain to an unlabeled target domain. Haeusser et
al. [5] propose the association loss as a discrepancy mea-
sure to enforce associations between source and target data
for producing statistically domain invariant embeddings. Li
et al. [11] propose domain consensus clustering to learn the
intrinsic structure of the target domain via encouraging dis-
criminative target clusters. Chen et al. [2] achieve the fea-
ture alignment via mutual nearest neighbors contrast and
exploit domain discrimination knowledge by hybrid proto-
type self-training.

D.2 Self-supervised Learning for UDA

Recently, self-supervised learning is introduced into do-
main adaptation. CDS [9] is proposed to perform self-
supervised learning (SSL) not only within a single domain
but also across two domains for better domain adaptation
performance. PCS [16] further extends the instance-wise
SSL in CDS to prototypical SSL, and proposes a powerful
end-to-end framework for domain adaptation. Our DN2A is
different from CDS and PCS in the starting point. CDS and
PCS are proposed for domain adaptation, where there are
two domains and the goal is the target domain alignment.
While our method is proposed for domain generalization
with multiple domains (more than two domains) to learn
domain invariant features. Notice that the cross-domain
matching strategy, which is the key component of CDS and
PCS for domain alignment, cannot be easily extended to
multiple domains. Directly matching each pair of multiple
domains may cause a negative transfer, especially for open-
set samples. While our method can flexibly find the neigh-
bors in the right domain among multiple domains (also ap-
plicable for two domains) for domain-invariant learning.
Secondly, CDS assumes that samples of the same class are
closer than other samples of different classes across differ-
ent domains, and uses entropy minimization to implicitly
discover and enforce the similarity between cross domain
pairs, which suffers from the match noise brought by the
domain gap and can be deemed as the vanilla cross do-
main NN selection counterpart of our method. Though PCS
proposes the instance-prototype matching to mitigate the
noise, the performance is undermined, especially for open-
set samples, where there could be no positive matches from
the same class. PCS indiscriminately pushes these negative
matches together, while our cross domain double-lock NN
(CD2NN) can avoid this situation by excluding the untrust-
worthy negative matches from training. Thus, our proposed
CD2NN strategy is more flexible, effective and robust for
cross domain matching, and can be used in CDS and PCS
as a superior alternative of their cross domain SSL strat-

egy to boost the performance for domain adaptation tasks.
Besides, our CD2NN strategy can extend CDS and PCS to
multi-source domain adaptation tasks, which could be inter-
esting future work.

E. Limitations and Future Work
While our work shows promising results, there are still

some limitations including: i) Pre-defined data augmenta-
tions such as Rotate, Contrast, Color, and Sharpness might
not be sufficient to eliminate domain information and limit
intra-domain connectivity. We will consider leveraging
more complicated data augmentation methods related to
style transfer in future work. ii) For the extreme case, where
there are no shared classes between any domains, our work
fails to use cross domain nearest neighbors for learning the
domain-invariant feature space. One possible way to ad-
dress this issue is to use generative-based methods to gen-
erate fictitious cross domain samples potentially belonging
to the same class as nearest neighbors. iii) Our work can be
further improved with adaptive prototypical classifier learn-
ing to achieve better performance for domain adaptation
task and multi-source domain adaptation task.

F. Datasets and Implementation Details
F.1 Datasets

DomainNet [12] is a recently proposed large-scale
dataset with 0.6 million images of 345 classes distributed on
6 domains, i.e., Real, Clipart, Infograph, Painting, Quick-
draw and Sketch. We follow the training/testing split re-
leased by [12] and follow [1] to partition the training split at
a ratio of 9:1 into the training and validation splits for model
selection. PACS [10] consists of four domains, i.e., Photo,
Art painting, Cartoon and Sketch, with diverse image styles.
It contains seven classes and 9,991 images totally. We use
the original training/validation split provided by [10].

F.2 Implementation Details.

Specifically, our strong augmentation strategy consists
of 14 types of augmentations: ShearX/Y, TranslateX/Y, Ro-
tate, AutoContrast, Identity, Equalize, Solarize, Posterize,
Contrast, Color, Brightness, Sharpness. The magnitude
of each augmentation is significant enough to produce as
strong augmentations as possible. More details of differ-
ent transformations are listed in Table S-3. Specifically,
to transform an image, we randomly select 5 augmenta-
tions from the above 14 types of transformations, which
creates powerful Â with

(
14
5

)
possible combinations, and

apply them to the image sequentially.
The UDG experiments consist of three steps: 1) unsu-

pervised training on the source domains; 2) using a small
subset of labeled source domain images to train the unsu-
pervised model (linear probing or fine-tuning); 3) testing



the trained model on the target domain, which is unseen
during the whole training process.

For unsupervised training, based on SimCLR [3], we
adopt ResNet-18 as the backbone, and use the projection
head with two MLP layers mapping the features to 128-d
and with ℓ2-norm on top. We strictly follow the protocol
of existing UDG methods [7,17], including same backbone,
same number of epochs, and same subset of classes used for
training and testing. We use batches of size 128, Adam opti-
mizer with lr 3e−4 and cosine LR-schedule for 1000 epochs
training. We set the temperature as τ = 0.07 and warm up
epoch as T = 100. For DomainNet, we train on Painting,
Real and Sketch and test on Clipart, Infograph and Quick-
draw, and vice versa. For PACS, we evaluate our method in
the leave-one-domain-out way, i.e., train on three domains
and test on the remaining domain.

For all correlated setting, we evaluate with linear prob-
ing and KNN accuracy. For linear probing, we train a lin-
ear classifier with a learning rate of 30 for 30 epochs and
use the source validation set for model selection. Besides,
we provide KNN (K=1) accuracy for our method, where
we directly use our unsupervised features without any addi-
tional training. For domain correlated setting, due to cate-
gory shift, we evaluate the model after finetuning 30 epochs
with learning rate 1e−3, and use the source validation set
for model selection.

F.3 Surrogate Metrics for Connectivity.

We propose to define the Overlap Ratio (OR) metric as
a surrogate measure for the degree of connectivity. Given
an unlabeled dataset SUL with NUL samples, we randomly
augment each raw image xi ∈ SUL for C times, and get an
augmented set S̃UL = {xij , i ∈ [NUL], j ∈ [C]}, which is
the experimental approximation to the distribution of aug-
mentations A(·|x). Then, for each xip ∈ S̃ULthat is an
augmented view of xi ∈ SUL, denoting its k-nearest neigh-
bors in S̃UL in the embedding space of the encoder f as
N(xip, S̃UL\xip, k), other augmented views from the same
domain as Cα(xip) = {xjl, di = dj , l ∈ [C]}, and other
augmented views from the same category as Cβ(xip) =
{xjl, yi = yj , l ∈ [C]}, we can define the intra-domain
overlap ratio and intra-class overlap ratio as the ratio of aug-
mented views from the same domain and category in its k-
nearest neighbors, respectively.

ORα (xip) =
#[N(xip, S̃UL\xip, k) ∩ Cα (xip)]

#N(xip, S̃UL\xip, k)
∈ [0, 1]

(S-26)

ORβ (xip) =
#[N(xip, S̃UL\xip, k) ∩ Cβ (xip)]

#N(xip, S̃UL\xip, k)
∈ [0, 1]

(S-27)

We can define its average as Average Overlap Ratio (AOR)
on the whole dataset:

AORα = Exip∼S̃UL
ORα (xip) (S-28)

AORβ = Exip∼S̃UL
ORβ (xip) (S-29)

Here AORα and AORβ are surrogate metrics for intra-
domain and intra-class connectivity, respectively. In spe-
cific, we use C = 10 augmentations for each image and
take k = 1 by default. The encoder f is ResNet-18
trained by 10 epochs for warm-up in an unsupervised man-
ner.
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