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In Sec. A, we consider the social impact of our work.
The training efficiency of different attention architectures
and the full architecture of our segmentation model is de-
scribed in Sec. B. In Sec. C, we evaluate the number
of masked frames of MTP and the order of Naive and
MTP. Besides, we compare pseudo-labels of our initialized
model and unsupervised method and study the impact of the
weight of segmental confidence loss and the effect of dif-
ferent loss functions. Finally, we perform our D-TSTAS on
rare annotation cases. In Sec. D, we validate the qualitative
results of the CTE and the D-TSTAS.

A. Social impact

Our D-TSTAS achieves competitive performance com-
pared with the fully supervised setup by utilizing a sin-
gle annotated frame of each action segment, which facili-
tates the development of action understanding tasks. The
proposed approach can be applied to recognize frame-wise
frames of complex actions in long untrimmed videos, e.g.
instructional video analysis and surveillance applications.
Meanwhile, privacy protection should be considered in
practical applications.

B. The segmentation model

B.1 The training efficiency of different attention ar-
chitectures. We have explored different backbones for
TSTAS, including TCN backbone in [2], local-attention
transformer backbone in ASFormer [5], and linear-attention
transformer backbone in Flowformer [4]. When batch size
is larger than 1, the performance of the local-attention trans-
former on full-supervised TAS task degrades, as evident
from issue#5 and issue#9 on the official repository. As
shown in Tab. B.1, a similar degradation of performance
is observed for the TSTAS task The model achieves better
performance when the batch size is set to 1 rather than 8 but
requires 3 times the training time on the smallest dataset
like GTEA, which only contains 58 videos. When dealing
with large-scale datasets such as Breakfast which has 1712
videos, the training time becomes even more unacceptable.

Backbone bz | Training Time(min)
1 41
8 13
Linear-attention [4] | 8 8

F1@{10,25,50} Edit  Acc
847 794 597 796 642
428 387 267 33.1 405
76.0 714 553 717 69.0

Table B.1. Comparison with the different backbones under the
same timestamp-supervised setting with Li et al. [2] on the GTEA
dataset.
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Figure B.1. The overview of our encoder block.
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To balance training time and performance, we use Linear-
attention [4] in our transformer backbone, which is benefi-
cial for modeling long sequences.

B.2 The architecture of the segmentation model. In
this section, we present the details of the structure of our
segmentation model. We use the same encoder-decoder
structured transformer as ASFormer [5], whose encoder
consists of 10 encoder blocks. As shown in Fig. B.1, the
Linear layer is used as the feed-forward layer, and the out-
put of the InstanceNorm layer is applied as the inputs of the
attention layer (Q, K, and V come from the same inputs).
Instead of using local-attention, the flow-attention proposed
by [4] with linear-complexity is used. Moreover, we utilize
the hierarchical pattern [5] for the attention layers in both
the encoder and decoder. Unlike the encoder, the Q and K
in the decoder are obtained from the output of the Instan-
ceNorm layer, while the V is obtained from the output of
the previous layer Fj,.

As shown in Fig. B.2, we describe the overall architec-
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Figure B.2. The architecture of Flow-Attention [4]. Q denotes the
queries, K is the keys, and V is the values.

Number I\I/?%‘]‘jhzﬁ:i’?e CTE | F1@{10,25,50} Edit Acc
v 508 551 449 521 701
10.17%) | v v 602 557 455 528 70.5
v v v |84 82 712 775 802
v 546 504 399 456 696
3052%) | v v 582 547 443 497 731
v v v |81 83 713 776 798
v 418 358 257 341 594
5086%) | v v 547 503 402 460 713
v v v |84 811 684 761 787
7 391 334 224 330 565
7021%) | v v 540 490 389 440 712
v v v |85 814 698 774 784
7 307 251 157 270 459
13225%) | v v 537 492 384 442 711
v v v | 817 797 663 749 771
v 311 247 143 273 435
152.60%) | v v 543 505 402 443 711
v v v |817 793 666 743 768
v 27 177 94 217 347
29(5.00%) | v v 553 509 409 466 71.5
v v v |89 87 613 767 713
7 229 172 89 208 344
57(9.84%) | v v 556 518 415 462 70.5
v v v |80 791 660 747 768

Table C.1. The impact of the number of masked frames with MTP
(Feature-to-Label) on the 50Salads dataset. We report the results
of different numbers of masked frames based on the transformer
backbone using only the MTP, the MTP combined with Naive, and
the CTE after initialization, respectively. On average, each action
segmentation contains 579 frames.

ture of flow attention which contains the competition archi-
tecture and the allocation architecture.

C. Ablation studies

C.1 The impact of the number of masked frames.
To study the effect of the MTP with different masking ra-
tios, we perform the ablation experiments based on the
transformer backbone using only the MTP, the MTP com-

Initialization .

Number MTP  Naive CTE | F1@{10,25,50} Edit Acc

v 0.1 0.0 00 104 26

1(0.17%) v v 53.6 49.7 39.7 449 712

v v v 83.8 822 690 767 772

v 04 02 00 97 25

3(0.52%) v v 519 476 382 449 699
v v v 839 82.0 679 76.0 767

v 0.2 0.1 00 94 25

5(0.86%) v v 534 492 39.1 451 70.1
v v v 834 8l4 678 766 76.5

v 00 00 00 87 25

7(1.21%) v v 53.8 49.6 39.8 457 70.2
v v v 837 815 67.8 765 769

v 00 00 00 77 24

13(2.25%) v v 53.7 494 404 454 705
v v v 84.0 81.8 684 767 76.7

v 00 00 00 69 24

15(2.60%) v v 52.0 47.6 385 43.1 69.8
v v v 83.8 8l1.6 67.6 758 769

v 00 00 00 47 24

29(5.00%) v v 519 476 384 431 695
v v v 829 80.6 67.5 760 76.6

v 00 00 00 47 24

57(9.84%) v v 499 456 37.1 429 69.7
v v v 83.0 80.7 674 755 768

Table C.2. The impact of the number of masked frames with MTP
(Feature-to-Feature) on the 50Salads dataset. We report the results
of different numbers of masked frames based on the transformer
backbone using only the MTP, the MTP combined with Naive, and
the CTE after initialization, respectively. On average, each action
segmentation contains 579 frames.

bined with the Naive, and the CTE after initialization on the
50Salads dataset, respectively. We first compare the num-
ber of masked frames for the MTP with the reconstruction
target as the action category (Feature-to-Label). As shown
in Tab. C.1, during initializing the segmentation model, in-
creasing the number of masked frames causes a degradation
in performance. This drop in performance may be because
the masked frames except for annotated frames fail to ob-
tain supervision information of labels, which are not com-
puted as classification loss functions. Compared to mask-
ing only annotation frames, combining MTP and Naive pro-
duces over-segmentation errors in masking multiple frames,
as shown by low F1 scores. After adding CTE, the per-
formance of the model masking multiple frames is signifi-
cantly improved but is not as good as that of masking only
annotated timestamps.

As shown in Tab. C.2, we further evaluate the impact
of the number of masked frames for MTP with the recon-
struction target as the I3D feature (Feature-to-Feature). Us-
ing only the MTP, the initialization model lacks supervi-
sion information of action category, which results in few
correct frames of the output. By combining the MTP and
the Naive, the impact of the number of masked frames for
MTP is small on the performance. We also perform exper-
iments based on Feature-to-Feature models with the CTE
and they perform approximately as well for different num-



GTEA

Method F1@{10,25,50] Edit Acc
Naive 474 421 330 451 476
MTP 67.6 627 473 610 605
Naive+MTP 768 740 590 706 679
MTP+Naive 770 724 561 705 654

Naive+MTP+CTE | 90.7 89.0 744 872 753
MTP+Naive+CTE | 91.5 90.1 76.2 885 75.7
Table C.3. The impact of the order of the MTP and the Naive on
the GTEA dataset.

50Salads
Method F1@{10, 25,50} Edit Acc
Naive 413 361 253 400 379
MTP 554 511 409 468 68.7
Naive+MTP 622 586 482 533 758
MTP+Naive 62.6 58.1 474 526 740

Naive+MTP+CTE | 843 823 725 773 802
MTP+Naive+CTE | 844 822 712 775 80.2
Table C.4. The impact of the order of the MTP and the Naive on
the 50Salads dataset.

Method GTEA 50Salads Breakfast
Constrained K-medoids [1] | 75.3% 81.3% 76.9%
MTP+Naive 82.5%  87.5% 82.3%
Table C.5. Comparison of the accuracy of pseudo-labels between
our initialized model and unsupervised method (Constrained K-
medoids [1]) on the three datasets.

o F1@{10,25,50} Edit Acc
0.075 | 83.6 812 674 772 715
0.15 | 833 812 68.1 768 778
0.5 84.0 81.6 703 77.7 79.0
0.75 | 839 8l1.6 709 77.0 795
1 844 822 712 715 802
1.25 | 84.1 81.8 71.0 76.8 80.0
Table C.6. The impact of v on the 50Salads dataset.

bers of masked frames.

C.2 The impact of the order of initialization meth-
ods. To study the impact of the order of initialization meth-
ods, we evaluate the MTP and the Naive on the GTEA and
50Salads datasets. As shown in Tab. C.3 and Tab. C.4, com-
bining the MTP and the Naive outperforms using only the
MTP or the Naive, which demonstrates that they are com-
plementary. Using the Naive before or after the MTP per-
forms similar results. This is because combining the MTP
and the Naive to initialize the model can capture contex-
tual information, which helps to identify unlabelled action
frames. Furthermore, refining the model by using the CTE
achieves better results.

C.3 Comparison of our initialized model and unsu-
pervised methods. Without the initializing phase, previous
methods train models by generating pseudo-labels through
an unsupervised approach [1]. As shown in Tab. C.5, our
approach generates better frame-wise pseudo-labels by uti-
lizing the initialized model, which is reflected in the better
accuracy of pseudo-labels.

C.4 The impact of the weight of the segmental con-

F1@{10, 25,50} Edit Acc
Lopce 80.6 77.0 613 727 739
LopcetLimse 83.0 80.1 663 769 76.1
LocetLimsetLocons 844 822 712 775 802
Table C.7. The impact of different loss functions on the 50Salads
dataset.

Fl@{10,25,50} Edit Acc

GTEA

Lietal. [2] 724 662 436 714 593
EM-TSS [3] - - - - -
D-TSTAS 90.1 843 605 872 629
50Salads

Lietal. [2] 60.8 485 23.1 60.6 523

EM-TSS [3] 629 505 250 639 520

D-TSTAS 717 625 31.8 743 578

Breakfast

Lietal. [2] 655 522 280 704 512

EM-TSS [3] 57.3 469 250 61.7 485

D-TSTAS 67.6 543 31.0 694 524
Table C.8. Comparison with different methods by using the start
frame as the timestamp for each action segment on the three
datasets.

F1@{10,25,50} Edit Acc

GTEA

Lietal. [2] 765 73.0 556 68.7 63.8
EM-TSS [3] - - - - -
D-TSTAS 90.1 88.8 733 87.0 715
50Salads

Lietal. [2] 742 710 592 683 743

EM-TSS [3] 784 76.0 635 71.1 77.1

D-TSTAS 84.0 81.6 704 774 794

Breakfast

Lietal. [2] 708 635 454 713 613

EM-TSS [3] - - - - -

D-TSTAS 764 685 48.1 75.1 657
Table C.9. Comparison with different methods by using the cen-
ter frame as the timestamp for each action segment on the three
datasets.

fidence loss . During the refinement phase, we set the
weight of the smoothing loss to A = 0.15 as in [2], and the
weight of the segmental confidence loss v = 1. As shown
in Tab. C.6, we study the impact of v on the performance of
the 50Salads dataset. Reducing ~ to 0.075 still improves the
performance but is not as good as the default value of v = 1.
Increasing its value to v = 1.25 also causes a degradation in
performance. This drop in performance may be due to the
fact that segmental confidence loss heavily relies on shifted
boundaries of pseudo-labels, which affects the recognition
of frames near the boundaries.

C.5 The effect of different loss functions. To refine
the model, three loss functions are used, including weighted
classification loss (Lqce), smoothing loss (L se), and seg-
mental confidence 108S (Lscon ). Tab. C.7 shows the impact
of each loss on the 50Salads dataset. While the smoothing
loss significantly improves the performance of the model,
the addition of the segmental confidence loss still gives an
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Figure C.1. Qualitative result of the CTE on the GTEA dataset. We first illustrate the generated pseudo-labels Y™ of the refining model
during different steps m with the CTE. For a clear comparison, we only highlight the wrong action segments. Furthermore, we show the
process of updating the progressive pseudo-timestamp groups in step 1. The red arrows denote the new pseudo-timestamps, and we unify
the class of frames between the new timestamp and the original timestamp as the category of annotated timestamp. The red box shows the

frames of action (‘Take’) in the pseudo-timestamp group.
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Figure C.2. Qualitative results of Naive, MTP, MTP+Naive, Li et al. [2], and our D-TSTAS on (a) GTEA, (b) 50Salads, and (c) Breakfast

datasets.

additional boost in performance. This is because the seg-
mental confidence loss promotes high confidence for all
frames within pseudo-timestamp groups and avoids blurring
action boundaries.

C.6 The effect of timestamp locations. In rare an-
notation cases, we compare the D-TSTAS with recent ap-
proaches [2,3] for timestamp supervision TAS. Specifically,
we compare the results of using the start frame and cen-

ter frame as annotated timestamps for each action segment.
Tab. C.8 and Tab. C.9 show our D-TSTAS outperforms the
recent methods on the three datasets. While using the center
frames of each segment achieves comparable performance
to a random frame [2], utilizing the start frames of each seg-
ment results in a huge drop in performance. Note that the
performance using random annotations is very close to that
of real annotations, and the annotating start frames of each



segment is a low-quality annotation [2].

D. Qualitative Analysis

D.1 Qualitative result of the CTE. We visualize the
generated pseudo-labels of the refining model during 6 it-
erations with the CTE. As shown in Fig. C.1, our CTE
gradually improves the accuracy of the pseudo-labels as the
pseudo-timestamp groups are updated. We further show
the process of updating steps of the CTE in step 1. These
pseudo-timestamp groups obtain rich action representations
for action segments, the use of which helps the model to
achieve better pseudo-labels. As shown in the red box in
Fig. C.1, the frames of the pseudo-timestamp group exhibit
different semantics about the action of ‘Take’.

D.2 Qualitative results of D-TSTAS. As shown in
Fig. C.2, we show the qualitative results of different meth-
ods on three TAS datasets, including the Naive, the MTP,
the MTP+Naive, Li et al. [2] and our D-TSTAS. During
the initializing phase, the MTP combined with the Naive
reduces focus bias compared to the Naive method. The pre-
vious refinement method [2] contains representation bias,
which results in identifying the wrong action segments. Our
proposed method significantly alleviates both of these bi-
ases, and the results of our D-TSTAS are the closest to the
ground truth.
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