
Reducing the Label Bias for Timestamp Supervised
Temporal Action Segmentation

Kaiyuan Liu1* Yunheng Li1* Shenglan Liu1† Chenwei Tan1 Zihang Shao1

1School of Computer Science, Dalian University of Technology, China
{1154864382,liyunheng,liusl,tcw2000,1317588161}@mail.dlut.edu.cn

In Sec. A, we consider the social impact of our work.
The training efficiency of different attention architectures
and the full architecture of our segmentation model is de-
scribed in Sec. B. In Sec. C, we evaluate the number
of masked frames of MTP and the order of Naive and
MTP. Besides, we compare pseudo-labels of our initialized
model and unsupervised method and study the impact of the
weight of segmental confidence loss and the effect of dif-
ferent loss functions. Finally, we perform our D-TSTAS on
rare annotation cases. In Sec. D, we validate the qualitative
results of the CTE and the D-TSTAS.

A. Social impact
Our D-TSTAS achieves competitive performance com-

pared with the fully supervised setup by utilizing a sin-
gle annotated frame of each action segment, which facili-
tates the development of action understanding tasks. The
proposed approach can be applied to recognize frame-wise
frames of complex actions in long untrimmed videos, e.g.
instructional video analysis and surveillance applications.
Meanwhile, privacy protection should be considered in
practical applications.

B. The segmentation model
B.1 The training efficiency of different attention ar-

chitectures. We have explored different backbones for
TSTAS, including TCN backbone in [2], local-attention
transformer backbone in ASFormer [5], and linear-attention
transformer backbone in Flowformer [4]. When batch size
is larger than 1, the performance of the local-attention trans-
former on full-supervised TAS task degrades, as evident
from issue#5 and issue#9 on the official repository. As
shown in Tab. B.1, a similar degradation of performance
is observed for the TSTAS task The model achieves better
performance when the batch size is set to 1 rather than 8 but
requires 3 times the training time on the smallest dataset
like GTEA, which only contains 58 videos. When dealing
with large-scale datasets such as Breakfast which has 1712
videos, the training time becomes even more unacceptable.

Backbone bz Training Time(min) F1@{10,25,50} Edit Acc

Local-attention [5] 1 41 84.7 79.4 59.7 79.6 64.2
8 13 42.8 38.7 26.7 33.1 40.5

Linear-attention [4] 8 8 76.0 71.4 55.3 71.7 69.0

Table B.1. Comparison with the different backbones under the
same timestamp-supervised setting with Li et al. [2] on the GTEA
dataset.

Figure B.1. The overview of our encoder block.

To balance training time and performance, we use Linear-
attention [4] in our transformer backbone, which is benefi-
cial for modeling long sequences.

B.2 The architecture of the segmentation model. In
this section, we present the details of the structure of our
segmentation model. We use the same encoder-decoder
structured transformer as ASFormer [5], whose encoder
consists of 10 encoder blocks. As shown in Fig. B.1, the
Linear layer is used as the feed-forward layer, and the out-
put of the InstanceNorm layer is applied as the inputs of the
attention layer (Q, K, and V come from the same inputs).
Instead of using local-attention, the flow-attention proposed
by [4] with linear-complexity is used. Moreover, we utilize
the hierarchical pattern [5] for the attention layers in both
the encoder and decoder. Unlike the encoder, the Q and K
in the decoder are obtained from the output of the Instan-
ceNorm layer, while the V is obtained from the output of
the previous layer Fh.

As shown in Fig. B.2, we describe the overall architec-



Figure B.2. The architecture of Flow-Attention [4]. Q denotes the
queries, K is the keys, and V is the values.

Number Initialization CTE F1@{10, 25, 50} Edit AccMTP Naive

1(0.17%)
✓ 59.8 55.1 44.9 52.1 70.1
✓ ✓ 60.2 55.7 45.5 52.8 70.5
✓ ✓ ✓ 84.4 82.2 71.2 77.5 80.2

3(0.52%)
✓ 54.6 50.4 39.9 45.6 69.6
✓ ✓ 58.2 54.7 44.3 49.7 73.1
✓ ✓ ✓ 84.1 82.3 71.3 77.6 79.8

5(0.86%)
✓ 41.8 35.8 25.7 34.1 59.4
✓ ✓ 54.7 50.3 40.2 46.0 71.3
✓ ✓ ✓ 83.4 81.1 68.4 76.1 78.7

7(1.21%)
✓ 39.1 33.4 22.4 33.1 56.5
✓ ✓ 54.0 49.0 38.9 44.0 71.2
✓ ✓ ✓ 83.5 81.4 69.8 77.4 78.4

13(2.25%)
✓ 30.7 25.1 15.7 27.0 45.9
✓ ✓ 53.7 49.2 38.4 44.2 71.1
✓ ✓ ✓ 81.7 79.7 66.3 74.9 77.1

15(2.60%)
✓ 31.1 24.7 14.3 27.3 43.5
✓ ✓ 54.3 50.5 40.2 44.3 71.1
✓ ✓ ✓ 81.7 79.3 66.6 74.3 76.8

29(5.00%)
✓ 22.7 17.7 9.4 21.7 34.7
✓ ✓ 55.3 50.9 40.9 46.6 71.5
✓ ✓ ✓ 82.9 80.7 67.3 76.7 77.3

57(9.84%)
✓ 22.9 17.2 8.9 20.8 34.4
✓ ✓ 55.6 51.8 41.5 46.2 70.5
✓ ✓ ✓ 82.0 79.1 66.0 74.7 76.8

Table C.1. The impact of the number of masked frames with MTP
(Feature-to-Label) on the 50Salads dataset. We report the results
of different numbers of masked frames based on the transformer
backbone using only the MTP, the MTP combined with Naive, and
the CTE after initialization, respectively. On average, each action
segmentation contains 579 frames.

ture of flow attention which contains the competition archi-
tecture and the allocation architecture.

C. Ablation studies
C.1 The impact of the number of masked frames.

To study the effect of the MTP with different masking ra-
tios, we perform the ablation experiments based on the
transformer backbone using only the MTP, the MTP com-

Number Initialization CTE F1@{10, 25, 50} Edit AccMTP Naive

1(0.17%)
✓ 0.1 0.0 0.0 10.4 2.6
✓ ✓ 53.6 49.7 39.7 44.9 71.2
✓ ✓ ✓ 83.8 82.2 69.0 76.7 77.2

3(0.52%)
✓ 0.4 0.2 0.0 9.7 2.5
✓ ✓ 51.9 47.6 38.2 44.9 69.9
✓ ✓ ✓ 83.9 82.0 67.9 76.0 76.7

5(0.86%)
✓ 0.2 0.1 0.0 9.4 2.5
✓ ✓ 53.4 49.2 39.1 45.1 70.1
✓ ✓ ✓ 83.4 81.4 67.8 76.6 76.5

7(1.21%)
✓ 0.0 0.0 0.0 8.7 2.5
✓ ✓ 53.8 49.6 39.8 45.7 70.2
✓ ✓ ✓ 83.7 81.5 67.8 76.5 76.9

13(2.25%)
✓ 0.0 0.0 0.0 7.7 2.4
✓ ✓ 53.7 49.4 40.4 45.4 70.5
✓ ✓ ✓ 84.0 81.8 68.4 76.7 76.7

15(2.60%)
✓ 0.0 0.0 0.0 6.9 2.4
✓ ✓ 52.0 47.6 38.5 43.1 69.8
✓ ✓ ✓ 83.8 81.6 67.6 75.8 76.9

29(5.00%)
✓ 0.0 0.0 0.0 4.7 2.4
✓ ✓ 51.9 47.6 38.4 43.1 69.5
✓ ✓ ✓ 82.9 80.6 67.5 76.0 76.6

57(9.84%)
✓ 0.0 0.0 0.0 4.7 2.4
✓ ✓ 49.9 45.6 37.1 42.9 69.7
✓ ✓ ✓ 83.0 80.7 67.4 75.5 76.8

Table C.2. The impact of the number of masked frames with MTP
(Feature-to-Feature) on the 50Salads dataset. We report the results
of different numbers of masked frames based on the transformer
backbone using only the MTP, the MTP combined with Naive, and
the CTE after initialization, respectively. On average, each action
segmentation contains 579 frames.

bined with the Naive, and the CTE after initialization on the
50Salads dataset, respectively. We first compare the num-
ber of masked frames for the MTP with the reconstruction
target as the action category (Feature-to-Label). As shown
in Tab. C.1, during initializing the segmentation model, in-
creasing the number of masked frames causes a degradation
in performance. This drop in performance may be because
the masked frames except for annotated frames fail to ob-
tain supervision information of labels, which are not com-
puted as classification loss functions. Compared to mask-
ing only annotation frames, combining MTP and Naive pro-
duces over-segmentation errors in masking multiple frames,
as shown by low F1 scores. After adding CTE, the per-
formance of the model masking multiple frames is signifi-
cantly improved but is not as good as that of masking only
annotated timestamps.

As shown in Tab. C.2, we further evaluate the impact
of the number of masked frames for MTP with the recon-
struction target as the I3D feature (Feature-to-Feature). Us-
ing only the MTP, the initialization model lacks supervi-
sion information of action category, which results in few
correct frames of the output. By combining the MTP and
the Naive, the impact of the number of masked frames for
MTP is small on the performance. We also perform exper-
iments based on Feature-to-Feature models with the CTE
and they perform approximately as well for different num-



Method GTEA
F1@{10, 25, 50} Edit Acc

Naive 47.4 42.1 33.0 45.1 47.6
MTP 67.6 62.7 47.3 61.0 60.5
Naive+MTP 76.8 74.0 59.0 70.6 67.9
MTP+Naive 77.0 72.4 56.1 70.5 65.4
Naive+MTP+CTE 90.7 89.0 74.4 87.2 75.3
MTP+Naive+CTE 91.5 90.1 76.2 88.5 75.7

Table C.3. The impact of the order of the MTP and the Naive on
the GTEA dataset.

Method 50Salads
F1@{10, 25, 50} Edit Acc

Naive 41.3 36.1 25.3 40.0 37.9
MTP 55.4 51.1 40.9 46.8 68.7
Naive+MTP 62.2 58.6 48.2 53.3 75.8
MTP+Naive 62.6 58.1 47.4 52.6 74.0
Naive+MTP+CTE 84.3 82.3 72.5 77.3 80.2
MTP+Naive+CTE 84.4 82.2 71.2 77.5 80.2

Table C.4. The impact of the order of the MTP and the Naive on
the 50Salads dataset.

Method GTEA 50Salads Breakfast
Constrained K-medoids [1] 75.3% 81.3% 76.9%
MTP+Naive 82.5% 87.5% 82.3%

Table C.5. Comparison of the accuracy of pseudo-labels between
our initialized model and unsupervised method (Constrained K-
medoids [1]) on the three datasets.

γ F1@{10, 25, 50} Edit Acc
0.075 83.6 81.2 67.4 77.2 77.5
0.15 83.3 81.2 68.1 76.8 77.8
0.5 84.0 81.6 70.3 77.7 79.0

0.75 83.9 81.6 70.9 77.0 79.5
1 84.4 82.2 71.2 77.5 80.2

1.25 84.1 81.8 71.0 76.8 80.0
Table C.6. The impact of γ on the 50Salads dataset.

bers of masked frames.
C.2 The impact of the order of initialization meth-

ods. To study the impact of the order of initialization meth-
ods, we evaluate the MTP and the Naive on the GTEA and
50Salads datasets. As shown in Tab. C.3 and Tab. C.4, com-
bining the MTP and the Naive outperforms using only the
MTP or the Naive, which demonstrates that they are com-
plementary. Using the Naive before or after the MTP per-
forms similar results. This is because combining the MTP
and the Naive to initialize the model can capture contex-
tual information, which helps to identify unlabelled action
frames. Furthermore, refining the model by using the CTE
achieves better results.

C.3 Comparison of our initialized model and unsu-
pervised methods. Without the initializing phase, previous
methods train models by generating pseudo-labels through
an unsupervised approach [1]. As shown in Tab. C.5, our
approach generates better frame-wise pseudo-labels by uti-
lizing the initialized model, which is reflected in the better
accuracy of pseudo-labels.

C.4 The impact of the weight of the segmental con-

F1@{10, 25, 50} Edit Acc
Lwce 80.6 77.0 61.3 72.7 73.9
Lwce+Ltmse 83.0 80.1 66.3 76.9 76.1
Lwce+Ltmse+Lsconf 84.4 82.2 71.2 77.5 80.2

Table C.7. The impact of different loss functions on the 50Salads
dataset.

F1@{10, 25, 50} Edit Acc
GTEA
Li et al. [2] 72.4 66.2 43.6 71.4 59.3
EM-TSS [3] - - - - -
D-TSTAS 90.1 84.3 60.5 87.2 62.9

50Salads
Li et al. [2] 60.8 48.5 23.1 60.6 52.3
EM-TSS [3] 62.9 50.5 25.0 63.9 52.0
D-TSTAS 77.7 62.5 31.8 74.3 57.8

Breakfast
Li et al. [2] 65.5 52.2 28.0 70.4 51.2
EM-TSS [3] 57.3 46.9 25.0 61.7 48.5
D-TSTAS 67.6 54.3 31.0 69.4 52.4

Table C.8. Comparison with different methods by using the start
frame as the timestamp for each action segment on the three
datasets.

F1@{10, 25, 50} Edit Acc
GTEA
Li et al. [2] 76.5 73.0 55.6 68.7 63.8
EM-TSS [3] - - - - -
D-TSTAS 90.1 88.8 73.3 87.0 71.5

50Salads
Li et al. [2] 74.2 71.0 59.2 68.3 74.3
EM-TSS [3] 78.4 76.0 63.5 71.1 77.1
D-TSTAS 84.0 81.6 70.4 77.4 79.4

Breakfast
Li et al. [2] 70.8 63.5 45.4 71.3 61.3
EM-TSS [3] - - - - -
D-TSTAS 76.4 68.5 48.1 75.1 65.7

Table C.9. Comparison with different methods by using the cen-
ter frame as the timestamp for each action segment on the three
datasets.

fidence loss γ. During the refinement phase, we set the
weight of the smoothing loss to λ = 0.15 as in [2], and the
weight of the segmental confidence loss γ = 1. As shown
in Tab. C.6, we study the impact of γ on the performance of
the 50Salads dataset. Reducing γ to 0.075 still improves the
performance but is not as good as the default value of γ = 1.
Increasing its value to γ = 1.25 also causes a degradation in
performance. This drop in performance may be due to the
fact that segmental confidence loss heavily relies on shifted
boundaries of pseudo-labels, which affects the recognition
of frames near the boundaries.

C.5 The effect of different loss functions. To refine
the model, three loss functions are used, including weighted
classification loss (Lwce), smoothing loss (Ltmse), and seg-
mental confidence loss (Lsconf ). Tab. C.7 shows the impact
of each loss on the 50Salads dataset. While the smoothing
loss significantly improves the performance of the model,
the addition of the segmental confidence loss still gives an



Figure C.1. Qualitative result of the CTE on the GTEA dataset. We first illustrate the generated pseudo-labels Ŷ m of the refining model
during different steps m with the CTE. For a clear comparison, we only highlight the wrong action segments. Furthermore, we show the
process of updating the progressive pseudo-timestamp groups in step 1. The red arrows denote the new pseudo-timestamps, and we unify
the class of frames between the new timestamp and the original timestamp as the category of annotated timestamp. The red box shows the
frames of action (‘Take’) in the pseudo-timestamp group.

Figure C.2. Qualitative results of Naive, MTP, MTP+Naive, Li et al. [2], and our D-TSTAS on (a) GTEA, (b) 50Salads, and (c) Breakfast
datasets.

additional boost in performance. This is because the seg-
mental confidence loss promotes high confidence for all
frames within pseudo-timestamp groups and avoids blurring
action boundaries.

C.6 The effect of timestamp locations. In rare an-
notation cases, we compare the D-TSTAS with recent ap-
proaches [2,3] for timestamp supervision TAS. Specifically,
we compare the results of using the start frame and cen-

ter frame as annotated timestamps for each action segment.
Tab. C.8 and Tab. C.9 show our D-TSTAS outperforms the
recent methods on the three datasets. While using the center
frames of each segment achieves comparable performance
to a random frame [2], utilizing the start frames of each seg-
ment results in a huge drop in performance. Note that the
performance using random annotations is very close to that
of real annotations, and the annotating start frames of each



segment is a low-quality annotation [2].

D. Qualitative Analysis
D.1 Qualitative result of the CTE. We visualize the

generated pseudo-labels of the refining model during 6 it-
erations with the CTE. As shown in Fig. C.1, our CTE
gradually improves the accuracy of the pseudo-labels as the
pseudo-timestamp groups are updated. We further show
the process of updating steps of the CTE in step 1. These
pseudo-timestamp groups obtain rich action representations
for action segments, the use of which helps the model to
achieve better pseudo-labels. As shown in the red box in
Fig. C.1, the frames of the pseudo-timestamp group exhibit
different semantics about the action of ‘Take’.

D.2 Qualitative results of D-TSTAS. As shown in
Fig. C.2, we show the qualitative results of different meth-
ods on three TAS datasets, including the Naive, the MTP,
the MTP+Naive, Li et al. [2] and our D-TSTAS. During
the initializing phase, the MTP combined with the Naive
reduces focus bias compared to the Naive method. The pre-
vious refinement method [2] contains representation bias,
which results in identifying the wrong action segments. Our
proposed method significantly alleviates both of these bi-
ases, and the results of our D-TSTAS are the closest to the
ground truth.



References
[1] Nadine Behrmann, S Alireza Golestaneh, Zico Kolter, Juer-

gen Gall, and Mehdi Noroozi. Unified fully and timestamp
supervised temporal action segmentation via sequence to se-
quence translation. In European Conference on Computer Vi-
sion, pages 52–68. Springer, 2022. 3

[2] Zhe Li, Yazan Abu Farha, and Jurgen Gall. Temporal action
segmentation from timestamp supervision. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 8365–8374, 2021. 1, 3, 4, 5

[3] Rahul Rahaman, Dipika Singhania, Alexandre Thiery, and
Angela Yao. A generalized and robust framework for times-
tamp supervision in temporal action segmentation. In Eu-
ropean Conference on Computer Vision, pages 279–296.
Springer, 2022. 3, 4

[4] Haixu Wu, Jialong Wu, Jiehui Xu, Jianmin Wang, and Ming-
sheng Long. Flowformer: Linearizing transformers with con-
servation flows. In International Conference on Machine
Learning, pages 24226–24242. PMLR, 2022. 1, 2

[5] Fangqiu Yi, Hongyu Wen, and Tingting Jiang. Asformer:
Transformer for action segmentation. In The British Machine
Vision Conference (BMVC), 2021. 1


