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1. Overview
This supplementary material presents additional results to complement the main manuscript. First, we explain all the

losses in our training process in Section 2. Then, we describe the experimental setup, including the datasets, compared
methods, and evaluation metrics in Section 3. Next, we show the complete visual comparisons of the camera pose estimation
results on the MPI Sintel Dataset in Section 4. In addition to this document, we provide an interactive HTML interface to
compare our video results with state-of-the-art methods.

2. Losses
In this section, we explain all the training losses in detail.

Reconstruction loss. We train the static and dynamic radiance fields by minimizing the RGB reconstruction loss between
the predicted and input images.
Reprojection loss. Based on the optimized camera poses and geometry, we project each 3D sampled point into the neighbor
frame and compute the induced optical flow. Additionally, we enforce this induced flow to be similar to the optical flow
estimated by RAFT. For the static radiance field, we calculate this loss only in the static regions indicated by the precalculated
motion masks. For the dynamic radiance field, in addition to the relative camera pose and the geometry, we also take into
account the scene flow estimated by the scene flow MLP when computing the induced flow.
Disparity loss. Similar to the reprojection loss that regularizes the consistency in the image’s spatial domain, we also
enforce the consistency in the depth domain. We project each volume-rendered 3D point into the neighbor camera and take
the z component. We also calculate the z component of the corresponding (by RAFT flow) volume-rendered 3D point in the
neighbor frame. Further, we enforce these two z values to be as close as possible. For the static radiance field, we calculate
this loss only in the static regions indicated by the precalculated motion masks. For the dynamic radiance field, we also
consider the scene flow estimated by the scene flow MLP when computing the z values.
Monocular depth loss. In order to deal with challenging camera motion, such as pure rotation or little translation and
parallax, we use the state-of-the-art off-the-shell single-image depth estimation to guide the geometry during the optimization.
Additionally, this loss helps resolve the ambiguity of the scale of a moving object. In accordance with MiDaS’s training
strategy, we apply a scale- and shift-invariant loss between the predicted depth and the depth determined by MiDaS. For the
static radiance field, we only calculate this loss in the static regions indicated by the precalculated motion masks.
Motion mask loss. We enforce the volume-rendered nonrigid mask to be similar to the pre-calculated motion mask.
Note that this way, the optimization can learn how to blend the static and dynamic parts instead of relying entirely on the
pre-calculated motion masks.
Smooth scene flow loss. We regularize the prediction of the scene flow MLP to be smooth across time.
Small scene flow loss. As the time interval in the input monocular video is small, we regularize the prediction of the scene
flow MLP to be small.
Distortion loss. We follow Mip-NeRF 360 to introduce distortion loss and eliminate the novel views’ floaters.
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Voxel TV loss. As our model is based on explicit voxel, which does not have smoothness regularization like MLPs, we
enforce a TV loss on the voxel space to ensure the smoothness of the prediction.
Voxel density L1 loss. We encourage the voxel to be as sparse as possible by introducing a density L1 regularization loss.

3. Experimental Setup

Datasets. We evaluate our proposed method on four datasets: (1) the MPI Sintel dataset [1], (2) the Nvidia dynamic view
synthesis dataset [15], (3) the iPhone dataset [4], and (4) the DAVIS dataset [10].

For the purpose of validating camera pose estimation, we use the MPI Sintel dataset, which contains ground truth camera
trajectory data. The final version of the dataset is used, and we disregard sequences containing static or perfect line camera
trajectory. We evaluated fourteen sequences in total.

The Nvidia dynamic view synthesis dataset contains nine dynamic scenes captured by a camera rig. Therefore we use this
dataset to quantitatively and visually evaluate the performance of space-time synthesis methods.

Third, we quantitatively evaluate on the very recent iPhone dataset which contains seven dynamic scenes with ground
truth novel view images.

Lastly, we use the DAVIS dataset, which contains fifty challenging sequences. All of the sequences in the DAVIS dataset
contain dynamic moving objects such as animals or cars. COLMAP is not able to process most of the sequences as the camera
movement is either too small or too challenging. COLMAP can only estimate the camera poses for six out of fifty sequences
with ground truth object masks. Since COLMAP has difficulty processing this dataset, we use our estimated camera poses
for all the compared methods. Note that we do not use the provided foreground masks for dynamic view synthesis.
Compared methods. We compare our method with state-of-the-art camera pose estimation and dynamic view synthesis
methods.

• Camera pose estimation: We compare with learning-based pose estimation methods R-CVD [6], DROID-SLAM [12],
and ParticleSfM [17]. We also compare with view synthesis methods that do not require camera poses as input: NeRF
- - [14] and BARF [8]. We also try to use SCNeRF [5] but the trainings do not converge and result in NaN results.
Therefore we exclude SCNeRF from our comparisons.

• Dynamic view synthesis: We compare with existing view synthesis methods that can handle dynamic scenes: D-
NeRF [11], NR-NeRF [13], NSFF [7], DynamicNeRF [3], HyperNeRF [9], and TiNeuVox [2].

We obtain the results of all the methods using the official implementations with default configurations.
Evaluation metrics. For pose estimation, we report the three commonly used error metrics: RMSE of absolute trajectory
error (ATE), translation, and rotation part of relative pose error (RPE trans and RPE rot). As the estimated trajectories
are up to unknown scales, we scale, rotate, and align the predictions to the ground truth trajectories. For dynamic view
synthesis, we evaluate the entire synthesized images using the peak signal-to-noise ratio (PSNR) and perceptual similarity
using LPIPS [16].

4. Camera Pose Estimation Evaluation on the MPI Sintel Dataset
We show all the 14 sequences of the camera pose estimation comparisons on the Sintel dataset in Figure 1, Figure 2,

and Figure 3.

References
[1] Daniel J Butler, Jonas Wulff, Garrett B Stanley, and Michael J Black. A naturalistic open source movie for optical flow evaluation.

In ECCV, 2012. 2
[2] Jiemin Fang, Taoran Yi, Xinggang Wang, Lingxi Xie, Xiaopeng Zhang, Wenyu Liu, Matthias Nießner, and Qi Tian. Fast dynamic

radiance fields with time-aware neural voxels. ACM TOG, 2022. 2
[3] Chen Gao, Ayush Saraf, Johannes Kopf, and Jia-Bin Huang. Dynamic view synthesis from dynamic monocular video. In ICCV,

2021. 2
[4] Hang Gao, Ruilong Li, Shubham Tulsiani, Bryan Russell, and Angjoo Kanazawa. Monocular dynamic view synthesis: A reality

check. In NeurIPS, 2022. 2
[5] Yoonwoo Jeong, Seokjun Ahn, Christopher Choy, Anima Anandkumar, Minsu Cho, and Jaesik Park. Self-calibrating neural radiance

fields. In ICCV, 2021. 2
[6] Johannes Kopf, Xuejian Rong, and Jia-Bin Huang. Robust consistent video depth estimation. In CVPR, 2021. 2

2



1.2 1.0 0.8 0.6 0.4 0.20.0 0.2 0.4 5.8
5.6

5.4
5.2

5.0
4.8

4.6
4.4

4.2

0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8

1.2 1.0 0.8 0.6 0.4 0.20.0 0.2 0.4 5.8
5.6

5.4
5.2

5.0
4.8

4.6
4.4

4.2

0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8

1.2 1.0 0.8 0.6 0.4 0.20.0 0.2 0.4 5.8
5.6

5.4
5.2

5.0
4.8

4.6
4.4

4.2

0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8

1.2 1.0 0.8 0.6 0.4 0.20.0 0.2 0.4 5.8
5.6

5.4
5.2

5.0
4.8

4.6
4.4

4.2

0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8

alley 2

4.4 4.2 4.0 3.8 3.6 3.4 3.2 3.0 2.8 37.0
36.8

36.6
36.4

36.2
36.0

35.8
35.6

35.4

0.6
0.4
0.2

0.0
0.2
0.4
0.6
0.8
1.0

4.4 4.2 4.0 3.8 3.6 3.4 3.2 3.0 2.8 37.0
36.8

36.6
36.4

36.2
36.0

35.8
35.6

35.4

0.6
0.4
0.2

0.0
0.2
0.4
0.6
0.8
1.0

4.4 4.2 4.0 3.8 3.6 3.4 3.2 3.0 2.8 37.0
36.8

36.6
36.4

36.2
36.0

35.8
35.6

35.4

0.6
0.4
0.2

0.0
0.2
0.4
0.6
0.8
1.0

4.4 4.2 4.0 3.8 3.6 3.4 3.2 3.0 2.8 37.0
36.8

36.6
36.4

36.2
36.0

35.8
35.6

35.4

0.6
0.4
0.2

0.0
0.2
0.4
0.6
0.8
1.0

ambush 4

7.4
7.2

7.0
6.8

6.6
6.4 37.8

37.6
37.4

37.2
37.0

36.8

1.0

1.2

1.4

1.6

1.8

2.0

7.4
7.2

7.0
6.8

6.6
6.4 37.8

37.6
37.4

37.2
37.0

36.8

1.0

1.2

1.4

1.6

1.8

2.0

7.4
7.2

7.0
6.8

6.6
6.4 37.8

37.6
37.4

37.2
37.0

36.8

1.0

1.2

1.4

1.6

1.8

2.0

7.4
7.2

7.0
6.8

6.6
6.4 37.8

37.6
37.4

37.2
37.0

36.8

1.0

1.2

1.4

1.6

1.8

2.0

ambush 5

5.5
5.0

4.5
4.0

3.5
36.5

36.0
35.5

35.0
34.5

0.5

1.0

1.5

2.0

2.5

5.5
5.0

4.5
4.0

3.5
36.5

36.0
35.5

35.0
34.5

0.5

1.0

1.5

2.0

2.5

5.5
5.0

4.5
4.0

3.5
36.5

36.0
35.5

35.0
34.5

0.5

1.0

1.5

2.0

2.5

5.5
5.0

4.5
4.0

3.5
36.5

36.0
35.5

35.0
34.5

0.5

1.0

1.5

2.0

2.5

ambush 6

26 25 24 23 22 21 20 19 56
57

58
59

60
61

62
63

16
15
14
13
12
11
10

9

26 25 24 23 22 21 20 19 56
57

58
59

60
61

62
63

16
15
14
13
12
11
10

9

26 25 24 23 22 21 20 19 56
57

58
59

60
61

62
63

16
15
14
13
12
11
10

9

26 25 24 23 22 21 20 19 56
57

58
59

60
61

62
63

16
15
14
13
12
11
10

9

cave 2

31.6
31.4

31.2
31.0

30.8 60.4
60.6

60.8
61.0

61.2

12.4

12.2

12.0

11.8

11.6

31.6
31.4

31.2
31.0

30.8 60.4
60.6

60.8
61.0

61.2

12.4

12.2

12.0

11.8

11.6

31.6
31.4

31.2
31.0

30.8 60.4
60.6

60.8
61.0

61.2

12.4

12.2

12.0

11.8

11.6

31.6
31.4

31.2
31.0

30.8 60.4
60.6

60.8
61.0

61.2

12.4

12.2

12.0

11.8

11.6

cave 4
Sample frames ParticleSfM [17] NeRF - - [14] BARF [8] Ours

Figure 1. Qualitative results of moving camera localization on the MPI Sintel dataset.3
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Figure 2. Qualitative results of moving camera localization on the MPI Sintel dataset.
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Figure 3. Qualitative results of moving camera localization on the MPI Sintel dataset.
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