
Method Spatial Prior Reference Coordinate Target Prediction Cross-Attn. Reference Prior Update Discriminative PE

DETR No No [cx, cy, w, h] Standard ✓

Deformable DETR Implicit 4D [dcx, dcy, w, h] Deformable Points ✓

SMCA-DETR Implicit 4D [∆cx,∆cy, w, h] Gaussian Points

Conditional DETR Implicit 2D [∆cx,∆cy, w, h] Conditional

Anchor DETR Explicit 2D [∆cx,∆cy, w, h] Standard ✓

DAB-DETR Explicit 4D [∆cx,∆cy,∆w,∆h] Conditional ✓

SAM-DETR-w/SMCA Explicit 4D [∆cx,∆cy,∆w,∆h] Gaussian Points ✓

SAP-DETR (Ours) Explicit 2D+4D [∆x,∆y,∆ℓ,∆t,∆r,∆b] Conditional Side ✓ ✓

Table 7. Comparison of DETR-like models and our proposed SAP-DETR.

Appendix

A. Comparison of DETR Family

Tab. 7 detailedly compares various representative prop-
erties for the DETR family. DETR [2] follows the vanilla
Transformer structure and leverages the learnable positional
encodings to help Transformer distinguish paralleled input
queries. However, such learnable positional encodings with-
out any spatial prior help severely affect the convergency
speed of the Transformer detector. To this end, the main-
stream approaches make effort to introduce different spatial
prior into DETR, which can be divided into implicit and
explicit methods. Specifically, the former decouples refer-
ence coordinates from the learnable positional encodings,
while the latter directly sets a 2D/4D coordinate for each
query and maps such low-dimensional coordinate into a high
dimension positional encoding via the sinusoidal PE [24].

From the perspective of the spatial prior indoctrination, a
straightforward way for object query is to predict the offset
between their reference and the target bounding boxes. For
example, previous approaches [5, 16, 25] only regress the
offset of center points, while the current approaches [13, 26]
directly regress the 4D offset based on the reference coor-
dinate. Another spatial prior indoctrination benefits from
the redesign of the cross-attention mechanism. Deformable
DETR [31], SMCA [5], and SAM-DETR [26] aggregate
multiple extreme point regions from the content features by
directly predicting the coordinates of these points from the
object queries. Conditional DETR [16] and DAB-DETR [13]
utilize a Gaussian-like positional cross-attention map to at-
tend to distinct regions dynamically. Take a close insight at
the Gaussian map, the region of box sides and center point
are attended by different heads in the multi-head attention
mechanism. From the perspective of the spatial prior update,
the prevailing approaches [13, 26] apply a cascaded way to
refine the box prediction as well as update the reference spa-
tial prior. However, all of these methods view center points
as the reference spatial prior, eroding the discrimination of
the positional encodings during performing the redundant
prediction, thereby confusing the Transformer detector as

well as leading to the slow model convergency.
In our proposed SAP-DETR, such confusing reference

spatial prior is replaced by the query-specific reference point.
Specifically, each object query in SAP-DETR is assigned a
non-overlapping fixed grid-region, which prompts queries to
consider the grid area as a salient region to attend to image
features and compensate for the over-smooth/inadequacy
during center-based detection by localizing each side of the
bounding box layer by layer. Considering the sparseness
of the reference points, the movable strategy is proposed
to enhance small/slender object detection. Therefore, there
exists the 2D+4D reference spatial prior in the proposed
SAP-DETR, and the final prediction is based on such a 6D
reference coordinates ([∆x,∆y,∆∆t,∆r,∆b]). Taking an
insight into the Conditional attention mechanism, we investi-
gate that the highlight region is most relevant to four sides of
bounding boxes, hence facilitating the final box localization.
More intuitively, we devise the PECA to indicate the location
of bounding box sides to object queries, where they should
attend from context image features.

B. Temperature Consistency in PE

Following DETR, we also use the 2D sinusoidal function
PE(x, y) as positional encoding. Given a position, the PEpos
is calculated by

PET
pos(i) =

{
sin(pos · ωt) i = 2t

cos(pos · ωt) i = 2t+ 1,

ωt = T−2t/d, t = 1, · · · , d/2,

(6)

where T is an adjustable temperature and i is the channel
index of the positional embedding. As shown in Fig. 5, the
receptive field size of the positional attention map tends
to become wider with increasing temperature [13]. Before
the softmax operation, the positional query-to-key similarity
A in the cross-attention mechanism is computed by a dot-
product between query position PETq

posq and key position
PETk

posk
. Clearly, the resulting positional similarity in Fig. 5(a)

and (b) subjects to a Gaussian-like distribution. We fix the



The Temperature of the Positional Encoding (0.3~0.5 page)

T1=1000，T2=1000 T1=20，T2=20 T1=10000，T2=20 T1=20，T2=10000

(a) Tq=Tk=20 (b) Tq=Tk=104 (c) Tq=20, Tk=104 (d) Tq=104, Tk=20

Figure 5. Positional attention maps. Given two sequential PE of
query-key pairs, we fix one PE of the query, reshape its sequential
attention map for all PE of the key into original 2D image size.

The Temperature of the Positional Encoding (0.3~0.5 page)

T1=20，T2=10000

(a) Head1 (b) Head3 (c) Head5 (d) Head7

(a) Tq=Tk=20 (b) Tq=Tk=104 (c) Tq=20, Tk=104 (d) Tq=104, Tk=20

Figure 6. Positional attention maps in each head.

PETq
posq and then the center of A is calculated by

APE=PETq
posq

· PETk
posk

⊤

=

d/2∑
t

sin(ωq
tposq)sin(ωk

tposk)+cos(ωq
tposq)cos(ωk

tposk)

=

d/2∑
k

cos(ωq
tposq−ωk

tposk), posq, posk∈X = [0,
π

2
].

(7)
By fixing the posq, the center poscenter(k)

k of APE of each
dimension k∈{1, · · ·, d/2} is calculated by

poscenter(t)
k = argmax

posk∈X
(cos(ωq

tposq − ωk
tposk))

= argmin
posk∈X

(ωq
tposq − ωk

tposk)

= (Tk/Tq)
2t/dposq.

(8)

Consequently, there exists an offset center for each channel
of the positional attention map if Tk ̸= Tq. Literally, each
channel of the positional attention map can be viewed as a
superposition by several horizontal and vertical line masks
(see Fig. 6). So it is easy to illustrate the offset center and
irregular width/height of the positional attention maps as
shown in Fig. 5(c) and (d).

Without loss of generality, we eliminate the effect of con-
ditional scaling transformation and fix the temperature of
encoder’s positional encoding to 20. As shown in Tab. 9, the
reported results compare the different temperature settings
based on PECA. Clearly, both point and box site positional
encodings are benefit from a relative small consistent tem-
perature, especially when concatenating with box side PE.

C. Scaling Transformation for PE
Revisiting Conditional Spatial Query Prediction. Given
a set of content queries and their corresponding reference
points, the conditional spatial query prediction adaptively
maps the reference points into high-dimensional positional
embeddings according to a spatial transformation generated
by content queries. Let r/∈Rk denotes the 2D unnormalized
reference point, e∈Rd denotes the content query, and T∈
Rd indexes the scaling spatial transformation where d is
the query dimension. Then the conditional spatial query
prediction is calculated by

pq=T · PE(sigmoid(r/)), T=FFN(e), (9)

where FFN is a feed-forward network consisting of a lin-
ear layer, a ReLU activation, and a linear layer. PE is the
sinusoidal positional encoding as illustrated in Eq. (6). In
Conditional DETR [16], the unnormalized reference point
is either a learnable 2D coordinate or generated by its corre-
sponding content query.
Scaling Transformation in PECA. As introduced in Sec-
tion Appendix B, the proposed PECA concatenates both
point and box side PEs for conditional spatial cross-attention.
Following the scaling transformation of Conditional DETR,
we also conduct ablations on different ways of scaling trans-
formation in PECA. The following settings are involved:

• Comparing the effectiveness of scaling transformation
with and without box side PE concatenation.

• Comparing the effectiveness of scaling consistency in
both point PE and box side PE, and then considering
three types of ablation: no scaling, shared, and indepen-
dent scaling transformation.

• Exploiting a learnable diagonal matrix to transform the
positional encoding of the key-vector, which also can
be shared between point PE and box side PE.

Tab. 8 summarizes the results of the ablation study on the
3-layer encoder-decoder Transformer neck. There exists a
large gap between the performances of the model with no
key-vector scaling transformation and counterparts with the
transformation. We speculate that the scaling transformation
of key-vector PE may cause the decoder confusion in ex-
treme region localization, while the transformation on query-
vector PE (point or box side) would facilitate it to focus on
the spatial information within the content embeddings to
the content image features. In addition, we observe that the
main function of the point PE is to keep reference-specific
for each query, and its effectiveness on box side attention
will be weakened when concatenating the box side PE. Fi-
nally, we use a shared scaling transformation for both point
and box side PEs. More visualization on PECA without the
scaling transformation T please see our journal version.



Concatenate
Box Side PE

Scaling Transformation for PE
AP AP50 AP75 APS APM APL

Tk Tqp Tqb

✗ # # - 33.3 54.4 33.9 13.1 36.3 52.2
✗  # - 32.3 53.4 32.7 12.8 35.4 50.4
✗ #  - 34.4 55.3 35.6 14.5 37.7 53.3
✗   - 32.6 53.7 33.1 12.2 35.5 51.1
✓ # # # 34.0 54.5 35.0 13.9 37.1 52.8
✓  # # 33.2 54.0 34.0 13.3 36.4 51.7
✓ #  # 34.7 55.3 35.8 14.4 37.8 53.1
✓ # #  35.1 55.1 36.7 14.9 38.2 53.5
✓    32.6 53.4 33.2 12.3 35.6 52.0
✓ # G# H# 35.2 55.1 36.6 15.7 38.5 53.9
✓ #   35.2 55.4 36.8 15.8 38.5 53.6

G#and H# denote different independent scaling transformations.
# and  denote no scaling and shared scaling transformations, respectively.

Table 8. Ablation study on the scaling transformation of PE.

Concatenate
Box Side PE

Temperature of PE
AP AP50 AP75 APS APM APL

Tk Tqp Tqb

✗ 20 1000 - 31.8 52.8 32.1 12.8 34.4 50.5
✗ 1000 20 - 32.1 53.0 32.5 12.7 35.2 50.6
✗ 20 20 - 32.2 53.2 32.7 12.7 35.0 51.0
✓ 20 1000 1000 32.2 52.9 32.9 12.8 35.1 51.1
✓ 1000 20 20 32.3 52.7 32.8 13.3 35.2 50.8
✓ 20 20 20 33.0 53.6 33.5 13.7 36.3 52.1

Table 9. Ablation Study on the temperature consistency of PE.

(a) Tq=Tk=20 (b) Tq=Tk=104

(c) Tq=20, Tk=104 (d) Tq=104, Tk=20

(a) Ground Truth

(b) Positive Queries (d) TSNE Layer2

(c) TSNE Layer0

(f) TSNE Layer6

(e) TSNE Layer4

Figure 7. Visualization of t-SNE. Both grids and slots in t-SNE
represent object queries, where the green and blue color are the
positive queries, corresponding to the same colored ground truth.

D. Independent Prediction Heads

Taking a close insight into the semantic representation of
these object queries, we map each query output into a 2D
distribution via t-SNE [23]. As shown in Fig. 7, each dot
here represents an query output from the decoder layer. It
can be seen that the instance objects (blue and green dots
in Fig. 7(c)-(f)) whose location at the edge/corner of the dis-
tribution are easy to distinguish from the background queries.
More precisely, the instance objects, except from the first de-
coder layer, are at a closer distance than the semantic-close

queries. Inspired by this, we employ a dedicated classifica-
tion head for the first decoder layer and a shared head for the
others in the auxiliary training process.

Tab. 10 reports the ablation study on the 3-layer encoder-
decoder decoder neck. As we can see, the detach operation
generally boosts the detector performance by ∼0.3%AP, and
the independent box prediction head is conducive to the
Transformer detector for further improvements. Moreover,
There exists a slight performance drop when using the inde-
pendent classification prediction head.

E. Movable Reference Points
We evaluate two types of training strategies for reference

points. As illustrated in Fig. 8(a), we tile the mesh-grid refer-
ence points for their initialization and set such coordinates as
fixed/learnable parameters. By visualizing the learnable ref-
erence points in Fig. 8(b), their distribution are observed to
be uniform within the image, similar to the learnable anchor
points in Anchor DETR [25]. It indicates that the learnable
reference coordinates would not be affected by properties
of the target regression. We further hypothesize that there
exists partial denominators between salient points and the
center anchor points, to a certain extent.

As introduced in Sec. 3.1, the proposed movable refer-
ence points significantly facilitate detecting small and slen-
der objects, which are omitted caused by the sparseness of
the reference point distribution. The experiments in Sec. 4.2
demonstrate that the performance of small object detection is
prompted after applying the movable strategy. Dialectically,



Detach
Indep. Prediction Head

AP AP50 AP75 APS APM APLHeadcls Headbbox

✗ 34.6 54.8 35.7 14.4 37.6 52.8
✗ ✓ 34.7 54.8 36.0 16.2 37.6 53.2
✗ ✓ 34.8 55.0 35.8 15.3 37.8 53.5
✗ ✓ ✓ 34.7 54.8 36.1 14.5 38.1 52.7
✓ 35.0 55.1 36.5 15.6 38.3 53.0
✓ ✓ 34.6 55.1 35.9 14.6 37.9 52.1
✓ ✓ 35.2 55.4 36.8 15.8 38.5 53.6
✓ ✓ ✓ 35.0 55.2 36.3 14.7 38.2 54.0

Table 10. Ablation study on the independent prediction head.

we conduct another ablation on the number of queries to ver-
ify that such a vulnerability is attribute to the query sparsity.
Fig. 9 describes the performance histogram of 3-layer detec-
tors based on both 12-epoch and 36-epoch training schemes.
Without the help of the movable component, the standard
SAP-DETR relatively benefits more from the query number
growth compared to the counterpart. Along with query num-
ber increase, the performance gap is reduced progressively
(from 1.2 AP to 0.2 AP), which further verifies our sparsity
analysis and the effectiveness of the movable strategy.

To further demonstrate the effectiveness of the movable
strategy, the update processes of salient points are plotted
in Fig. 10 and Fig. 11. Indeed, some small and slender
objects can be localized well after moving the reference point
within the objects. However, some queries whose reference
points are located within the large objects behave an unstable
matching result that the matched queries in the latter layers
are inconsistent with the previous layers. Hence there exists
a slight performance deterioration for large object detection
after adding the movable reference points.

F. Training Details and More Configurations

Warm Up Training Strategy. In the early training pro-
cess, the bipartite matching in Transformer detectors may
appear to be fragile and instable, where the positive label are
assigned to one false prediction. This phenomenon is also re-
ported in DN-DETR [9]. Following the conventional training
strategy, we conduct a warm-up step during the early training
process. In our experiments, we set warm-up steps to 400
and 1000 iterations for 3-layer and 6-layer Encoder-Decoder
Transformer detectors, respectively.
Detailed Configurations. We list the all configurations
in Tab. 11. For each number of query in Appendix E, the
batch size of 8 is applied in our 3-layer SAP-DETR.

G. Visualization of Attention Maps

Visualization of Query-Specific Region. To understand
how query-specific reference point affect on the object
queries aggregation, we visualize the cross-attention map
and the output bounding box for each query based on DAB-
DETR and our proposed SAP-DETR in Fig. 12 to Fig. 15.

Item Value

lr 1e-4
lr backbone 1e-5
weight decay 1e-4
k pe temp 20
q point pe temp 20
q bbox pe temp 20
enc layers 3 / 6
dec layers 3 / 6
dim feedforward 2048
hidden dim 256
dropout 0.0
nheads 8
warm up 1000
batch size 4×4

Item Value

mask loss 1
obj loss 1
class loss 1
bbox loss 5
giou loss 2
obj cost 2
class cost 2
class cost 2
bbox cost 5
giou cost 2
inner cost 9999
focal alpha 0.25
transformer activation relu
num queries 400

Table 11. All configurations of SAP-DETR

Precisely, we visualize the query-specific region in various
scenes. For example, the #785 validation image with sam-
ple background and sparse instance, the #71226 validation
image with complex background and different scale objects,
the #1000 validation image with sophisticated instance ob-
jects, and the #3255 validation image with sophisticated
small instance objects. Compared with redundant predic-
tion and wilderness attention region in DAB-DETR, each
query of SAP-DETR only has a compact attention receptive
field except for the positive instance query, which benefits
from the query-specific reference point and PECA attention
mechansim, hence resulting in a superior convergency speed.
Visualization of PECA. Fig. 16 visualizes both content and
side attention generated by the proposed PECA. For each
positive object query, we visualize each head attention map
from the cross-attention mechanism. Then we compare them
with the conditional spatial cross-attention. All models are
based on ResNet-50 and 6-layer encoder-decoder structure
under 50 training epochs. Intuitively, our content attention
region mostly falls within the foreground content features,
whereas a proportion of the head of Conditional DETR focus
on the background. For the side attention, the attention maps
of Conditional DETR are inaccurate, with several attention
regions outside the bounding box. These inaccurate regions
make it fail to locate the extremities efficiently and accu-
rately. The visualization proves the effectiveness of PECA
for extreme region attention and partial object detection.
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Figure 8. Distribution.
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Figure 9. Comparison of performance and training losses curves between our purposed SAP-DETR and the current SOTA methods.

Initialized Reference Point Output Point from Layer #0 Output Point from Layer #5

Figure 10. Movable point update for COCO validation image #3255.Initialized Reference Point Output Point from Layer #0 Output Point from Layer #5

Initialized Reference Point Output Point from Layer #0 Output Point from Layer #5

Figure 11. Movable point update for COCO validation image #14473.



Visualization: sap 785 jj = [1,2,5,8,11,12,14,16,19] ii = [1,3,7,11,14,17]

(a) Ground Truth of COCO validation image #785

Visualization: sap 785 jj = [1,2,5,8,11,12,14,16,19] ii = [1,3,7,11,14,17]

(b) DAB-DETR for COCO validation image #785

Visualization: sap 785 jj = [1,2,5,8,11,12,14,16,19] ii = [1,3,7,11,14,17]

(c) SAP-DETR for COCO validation image #785

Figure 12. Visualization of partial object queries in both SAP-DETR and DAB-DETR.



Visualization: sap 71226 jj = [0,3,4,8,10,11,12,14,16] ii = [2,4,11,12,13,18] 

(a) Ground Truth of COCO validation image #71226

Visualization: sap 71226 jj = [0,3,4,8,10,11,12,14,16] ii = [2,4,11,12,13,18] 

(b) DAB-DETR for COCO validation image #71226

Visualization: sap 71226 jj = [0,3,4,8,10,11,12,14,16] ii = [2,4,11,12,13,18] 

(c) SAP-DETR for COCO validation image #71226

Figure 13. Visualization of partial object queries in both SAP-DETR and DAB-DETR.



Visualization: sap 1000 jj = [1,3,5,7,8,9,10,12,13,14,15,16,17,18,19] ii = [5,6,8,9,11,16]

(a) Ground Truth of COCO validation image #1000

Visualization: sap 1000 jj = [1,3,5,7,8,9,10,12,13,14,15,16,17,18,19] ii = [5,6,8,9,11,16]

(b) DAB-DETR for COCO validation image #1000

Visualization: sap 1000 jj = [1,3,5,7,8,9,10,12,13,14,15,16,17,18,19] ii = [5,6,8,9,11,16]

(c) SAP-DETR for COCO validation image #1000

Figure 14. Visualization of partial object queries in both SAP-DETR and DAB-DETR.



(a) Ground Truth of COCO validation image #3225

(b) DAB-DETR for COCO validation image #3255

(c) SAP-DETR for COCO validation image #3255

Figure 15. Visualization of partial object queries in both SAP-DETR and DAB-DETR.
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Visualization: 159311

(a) Comparison on COCO validation image #159311
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(b) Comparison on COCO validation image #507975

Figure 16. Comparison of PECA between Conditional DETR and SAP-DETR.
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