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1. Additional implementation details
Training details. At the training time, we first project the
query ray instead of a single point to each source view and
fetch the corresponding ray-based feature, which contains
rich contextual information in each intra-view. For pre-
training, we train on a single NVIDIA RTX3090-Ti GPU
with 24GB memory. On this hardware, we train our S-Ray
for 260k iterations in 60 different scenes of ScanNet [3]
(real-world data) and 100k iterations in 12 different scenes
of Replica [7] (synthetic data). For finetuning, we only re-
quire 10min finetuning time corresponding to 2k iterations.
This finetuning result is comparable and even better than
100k optimizations of Semantic-NeRF [10] from each in-
dependent scene.

We do not show the specific details of the semantic loss
design in the paper. In code implementation, we apply two-
stage (coarse and fine) ray sampling as done in NeRF [6].
Therefore, our semantic loss is actually computed as

Lsem = −
∑
r∈R

[
L∑

l=1

pl(r) log p̂lc(r) +

L∑
l=1

pl(r) log p̂lf (r)

]
(1)

where R are the set of sample rays within a training
batch, 1 ≤ l ≤ L is the class index, and pl, p̂lc, p̂

l
f are the

multi-class probability at class l of the ground truth, coarse
semantic logits and fine semantic logits for the query ray r.
Actually, for fair comparison in Section 4.2 of our paper, we
adopt the same training loss with Semantic-NeRF [10] as:

Ltotal = λ1Lsem + λ2Lphotometric, (2)

where the color head is from the geometry aware network
with photometric loss same as [10]. Like Semantic-NeRF,
we also set λ1 = λ2 = 1 in Section 4.2 and set λ1 =
0, λ2 = 1 as NeRF for ablation study in Table 2 of the paper.
Data split. Our training data consists of both synthetic data
and real data. For real data training, we choose 60 differ-
ent scenes from ScanNet [3] as training datasets and use the

image resolution of 320 × 240. We then choose 10 unseen
novel scenes as test datasets to evaluate the generalizability
of S-Ray in real data. For synthetic data, we choose 12 dif-
ferent scenes (i.e., 2 rooms, 2 offices, 7 apartments, 1 hotel)
from Replica [7] for the training set and the remains (i.e.,
2 apartments, 3 offices, 1 room) as test set with the image
resolution of 640 × 480. For each test scene, we select 20
nearby views; we then select 8 views as source input views,
8 as additional input for per-scene fine-tuning, and take the
remaining 4 as testing views. Our training data includes
various camera setups and scene types, which allows our
method to generalize well to unseen semantic scenarios.

2. Additional experiments and analysis
More discussion of loss function. When adding color ren-
dering, it is interesting to see the effect of the weighting fac-
tor, thus conducting the following experiments in Table 1.
We observe that color rendering can benefit semantics but
color rendering is not sensitive to semantics. Furthermore,
Table 1 shows that the semantic loss alone can also drive our
model to learn reasonable contextual geometry for semantic
information as visualized in Figure 1.

λ1/λ2 1/0 0.75/0.25 0.5/0.5 0.25/0.75 0/1
PSNR 17.49 25.26 25.35 26.24 26.57

mIoU(%) 55.10 56.51 57.15 58.12 3.62

Table 1. Different weighting factors effect under ScanNet [3] gen-
eralization settings.

Effectiveness of the CRA module. To further validate the
computational effectiveness of our Cross-Reprojection At-
tention (CRA) module, we provide the comparisons with
Dense Attention in FLOPs and Memory usage.

Table 2 and Table 3 show the computational perfor-
mance of real data by adopting different settings of our
Cross-Reprojection Attention (CRA) module. We observe
that directly applying the dense attention over multi-view
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Figure 1. Visualization of 2D CNN features from ResUnet and
intra-view attention map. It shows that our ResUnet can help S-
Ray learn reasonable geometry for contextual semantics and the
intra-view attention map is closely related to the visibility.

Description GFLOPs mIoU(%) Total Acc(%)

w/o CRA 0 76.30 86.02
Dense Attention 10.25 90.46 94.52
only intra-view Att 3.05 81.24 89.58
only cross-view Att 2.35 87.01 93.34
full CRA 5.40 91.08 98.20

Table 2. Performance on real data [3] for different settings of
Cross-Reprojection Attention module (CRA). FLOPs increments
are estimated for the input of 1024× 64× 8× 32.

Description Memory(MB) mIoU(%) Total Acc(%)

w/o CRA 0 76.30 86.02
Dense Attention 17647 90.46 94.52
only intra-view Att 3899 81.24 89.58
only cross-view Att 1583 87.01 93.34
full CRA 4143 91.08 98.20

Table 3. Performance on real data [3] for different settings of
Cross-Reprojection Attention module (CRA). Memory increments
are estimated for an input of 1024× 64× 8× 32.

reprojected rays suffers from heavy computational cost
and high GPU memory. In contrast, our CRA mod-
ule can achieve the comparable performance of dense
attention with friendly GPU memory and high compu-
tational efficiency. Specifically, the design of CRA can
improve the performance by 47.3% in FlOPs and 76.5%
in GPU memory. These results prove that the proposed
cross-reprojection attention can achieve high mIoU and
total accuracy by capturing dense and global contextual
information with computational efficiency.

Semantic ray construction. To construct the final
semantic ray in Section 3.4 of our paper, we assign distinct
weights to different source views and compute the semantic
ray with semantic consistency. Specifically, we design the
Semantic-aware Weight Network to rescore the significance

of each view with a hyperparameter τ , as

w ∈ C(τ) :=

{
w : 0 <

τ

m
< wi <

1

τm
,

m∑
i=1

wi = 1

}
,

(3)
where w is the view reweighting vector with length m in-
dicating the importance of source views. Instead of mean
aggregation which ignores the different significance of dif-
ferent source views, the hyperparameter τ controls the se-
mantic awareness of each view. The effectiveness of τ can
be seen in Table 4.

hyperparameter τ mIoU(%) Total Accuracy(%) Average Accuracy(%)

1 54.21 77.13 59.05
0.8 56.33 78.01 60.37
0.7 57.15 78.24 62.55
0.5 55.70 76.64 60.80
0.2 54.03 77.25 61.34

Table 4. Performance on real data [3] for different settings of hy-
perparameter τ in test set.

From Table 4, we observe that we can improve the per-
formance of semantic segmentation by assigning different
weights to each source view with hyperparameter τ . Note
that τ = 1 means the mean aggregation operation.

Training process. Given multiple views of a scene,
we construct a training pair of source and query view
(i.e., target view) by first randomly selecting a target
view, and sampling 8 nearby but sparse views as source
views. We follow [4] to build our sampling strategy. The
performance of our method in different training iterations
can be found in Table 12. The results show that we only
require 260k iterations for 20 hours to train our S-Ray over
60 different real scenes, which demonstrates the efficiency
and effectiveness of our network design.

More comparisons with Semantic-NeRF. To further
show our strong and fast generalizability in a novel
unseen scene, we compare our performance with Semantic-
NeRF [10] in per-scene optimization. The results are shown
in Table 13. While Semantic-NeRF [10] needs to train one
independent model for an unseen scene, we observe that
our network S-Ray can effectively generalize across unseen
scenes. What’s more, our direct result can be improved by
fine-tuning on more images for only 10 min (2k iterations),
which achieves comparable quality with Semantic-NeRF
for 100k iterations per-scene optimization. Moreover,
Semantic-NeRF shows very limited generalizability by first
generating pseudo semantic labels for an unseen scene with
a pretrained model, and then training on this scene with the
pseudo labels. In this way, Semantic-NeRF is able to apply
to new scenes without GT labels. In contrast, our S-Ray
provides stronger generalization ability by enabling directly
test on unseen scenes. We provide additional experiments



in Table 5.

Comparison with GPNR. The recent work GPNR [8]
also generates novel views from unseen scenes by enabling
cross-view communication through the attention mecha-
nism, which makes it a bit similar to our S-Ray. To further
justify the motivation and novelty, we summarize several
key differences as follows. Tasks: GPNR utilizes fully
attention-based architecture for color rendering while our
S-Ray focuses on learning a generalizable semantic field
for semantic rendering. Embeddings: GPNR applies three
forms of positional encoding to encode the information of
location, camera pose, view direction, etc. In contrast, our
proposed S-Ray only leverages image features with point
coordinates without any handcrafted feature engineering.
In this sense, our S-Ray enjoys a simpler design in a more
efficient manner. Training cost. While GPNR requires
training 24 hours on 32 TPUs, S-Ray only needs a single
RTX3090-Ti GPU with similar training time.

w/o ft ft 5k(p) ft 5k(gt) ft 50k(p) ft 50k(gt) ft converge(p) ft converge(gt)
S-NeRF N/A 78.59 86.32 85.64 91.33 92.10 95.24
S-Ray 77.82 88.07 93.40 91.25 95.15 92.43 95.39

Table 5. More mIoU comparisons with SemanticNeRF(S-NeRF)
in the scene0160-01 from ScanNet. Same with S-NeRF, we choose
pretrained DeepLabV3+ [2] to generate pseudo semantic labels
for finetuning. “p” means finetuning with pseudo labels, and “gt”
means finetuning with ground truth.

More discussion for reconstruction quality. To further
demonstrate the reconstruction quality and generalizability
of S-Ray, we evaluate S-Ray with NeuRay [4], MVS-
NeRF [1], and IBR-Net [9] on two typical benchmark
datasets (i.e., Real Forward-facing [5] and Realistic Syn-
thetic 360◦ [6]) in Table 6. In general, Table 6 shows our
Cross-Reprojection Attention module is also useful for
generalizable NeRFs with out semantic supervision. While

Realistic Synthetic 360° Real Forward-facing
Method PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

MVSNeRF 23.46 0.851 0.172 22.93 0.794 0.260
IBRNet 24.52 0.874 0.158 24.17 0.802 0.215
NeuRay 26.73 0.908 0.123 25.35 0.824 0.198

S-Ray(Ours) 26.84 0.917 0.115 25.68 0.833 0.180

Table 6. Quantitative comparisons of scene rendering in the gener-
alization setting. All generalization methods including our method
are pretrained on the same scenes and tested on unseen test scenes.

the three mentioned methods in Table 6 and our method
are image-based rendering, the main difference lies in how
to extract useful features: (a) MVS-NeRF leverages cost
volume to extract geometry features, which benefits the
acquisition of density; IBRNet performs feature attention
on rays in 3D space and NeuRay further extracts the
occlusion-aware features by explicitly modeling occlusion.

Their features are sparse in 3D space but sufficient for color
rendering. (b) Our method goes back to the 2D reprojection
space and obtains dense attention by cascading two sparse
attention modules, thus extracting rich semantic and
geometric features. A key point is that we apply a ResUnet
segmentation network fro context feature extraction to
get semantic priors, which is not present in the previous
methods.

Disscusion of the number of source views. We ob-

Ns mIoU(%) Total Acc(%) Avg Acc(%) PSNR SSIM

1 67.55 86.15 73.73 26.47 0.9077
4 75.41 90.51 81.06 30.90 0.9368
8 79.97 93.06 84.92 29.52 0.9106
12 83.21 93.89 88.07 28.57 0.8969
16 84.84 94.33 89.78 27.85 0.8859

Table 7. Performance(mIoU, Total accuracy, Average accuracy,
PSNR, SSIM) on the real data scene [3] wiht different source view
numbers Ns.

serve that using more source views on our S-Ray model can
improve semantic rendering quality. The results are shown
in Table 7. The reason is that adding more reference views
in training means leveraging more contextual information
for semantic feature learning to build a larger 3D contex-
tual space and reconstruct the final semantic ray, which
improves the view consistency and accuracy of semantic
segmentation.

Disccusion of semantic-aware weight. In semantic
ray construction, we learn the view reweighting vector w
to rescore the significance of each source view. To further
demonstrate the effectiveness of this rescore strategy, we
show the example in Figure 2. The results show that w can
distinct the different significance of different source views
to the query semantic ray.

3. Network architecture
Semantic feature extraction. Given input views and a
query ray, we project the ray to each input view and apply
the semantic feature extraction module in Table 8 to learn
contextual features and build an initial 3D contextual space.
The details can be found in Table 8 and Section 3.2 in the
paper.
Cross-Reprojection Attention. To model full semantic-
aware dependencies from the 3D contextual space with
computational efficiency, we design the Cross-Reprojection
Attention module in Table 9 to learn dense and global con-
textual information, which can finally benefit the perfor-
mance of semantic segmentation. The details of architec-
ture and design can be found in Table 9 and Section 3.3 in
the paper.



Type Size/Channels Activation Stride Normalization

Input 1: RGB images - - - -
Input 2: View direction differences - - - -
L1: Conv 7× 7 3, 16 ReLU 2 Instance
L2: ResBlock 3× 3 16, 32, 32 ReLU 2, 1 Instance
L3: ResBlock 3× 3 32, 64, 64 ReLU 2, 1 Instance
L4: ResBlock 3× 3 64, 64, 64 ReLU 1, 1 Instance
L5: ResBlock 3× 3 64, 128, 128 ReLU 2, 1 Instance
L6: ResBlock 3× 3 128, 128, 128 ReLU 1, 1 Instance
L7: ResBlock 3× 3 128, 128, 128 ReLU 1, 1 Instance
L8: ResBlock 3× 3 128, 128, 128 ReLU 1, 1 Instance
L9: ResBlock 3× 3 128, 128, 128 ReLU 1, 1 Instance
L10: ResBlock 3× 3 128, 128, 128 ReLU 1, 1 Instance
L11: Conv 3× 3 128, 64 - 1 Instance
L12: Up-sample 2× - - - -
L13: Concat (L12, L4) - - - -
L14: Conv 3× 3 128, 64 - 1 Instance
L15: Conv 3× 3 64, 32 - 1 Instance
L16: Up-sample 2× - - - -
L17: Concat (L16, L2) - - - -
L18: Conv 3× 3 64, 32 - 1 Instance
L19: Conv 1× 1 32, 32 - 1 Instance
L20: Reprojection
L21: MLP (Input 2) 4, 16, 32 ELU - -
L22: Add (L21, L20) - - - -

Table 8. Semantic feature extraction.

Type Feature dimension Activation

Input: Initial 3D contextual space - -
L1: Transpose (Input) - -
L2: Position Embeddings - -
L3: Add (L1, L2) - -
L4: Multi-head Attention (nhead=4) (L3) 32 ReLU
L5: Transpose (L4) - -
L6: Multi-head Attention (nhead=4) (L5) 32 ReLU

Table 9. Cross-Reprojection Attention module.

Type Feature dimension Activation

Input 1: Initial 3D contextual space - -
Input 2: View direction differences - -
L1: Concat (Input 1, Input 2) - -
L2: MLP (L1) 37, 16, 8, 1 ELU
L3: Sigmoid (L2) - -

Table 10. Semantic-aware weight network.

Semantic-aware weight network. To construct the final
semantic ray from refined 3D contextual space and learn
the semantic consistency along the ray, we introduce the
semantic-aware weight network in Table 10 to rescore the
significance of each source view. More experiments about

the semantic-aware weight net can be found in Table 4, and
we show architecture details in Table 10 and Section 3.4 of
the paper.
Geometry-aware network. To build our generalizable se-
mantic field, we adopt a geometry-aware network to predict



density σ and render the final semantic field with semantic
logits. Moreover, we also leverage this network to produce
the radiance and render a radiance field to show our render-
ing quality. We show the details of this network in Table 11
and Section 3.4 of the paper.
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Figure 2. Different significance weight of source view. Given the query ray, we apply the semantic-aware weight network to learn the
significance weight w to restore each source view. Note that the greater weight will be assigned to the more important source view.

Type Feature dimension Activation

Input: Initial 3D contextual space - -
L1: MLP (Input) 32, 32 ELU
L2: MLP (Input) 32, 1 ELU
L3: Sigmoid (L2) - -
L4: Dot-product (L1, L3) - -
L5: Cross-view Mean (L4) - -
L6: Cross-view Varience (L4) - -
L7: Concat (L5, L6) - -
L8: MLP (L7) 64, 32, 16 ELU
L9: Multi-head Attention (nhead=4) (L8) 16 ReLU
L10: MLP (L9) 16 ELU
L11: MLP (L10) 1 ReLU

Table 11. Geometry-aware network.

Method Validation Set Test Set
mIoU(%) Total Acc(%) Avg Acc(%) mIoU(%) Total Acc(%) Avg Acc(%)

S-Ray (10k iters) 63.70 85.70 71.86 48.53 74.75 56.55
S-Ray (50k iters) 72.85 88.72 79.52 52.32 77.31 59.38
S-Ray (100k iters) 81.25 94.80 86.84 54.27 79.13 61.76
S-Ray (200k iters) 89.31 97.91 91.10 54.44 76.46 60.63
S-Ray (260k iters) 89.57 98.54 91.02 57.15 78.24 62.55
S-Ray (300k iters) 88.99 98.40 90.39 55.84 77.67 62.15

Table 12. Quantitative results (mIoU, total accuracy, average accuracy) of our method (S-Ray) in training process from multiple scenes in
real dataset [3].



Unseen Scenes Ground Truth S-Ray w/o ft S-Ray ft 2k iters S-NeRF 100k iters

Figure 3. Additional semantic rendering quality comparison. More qualitative comparisons between our method S-Ray and non-
generalizable method Semantic-NeRF [10] (S-NeRF for short) for semantic rendering in real data [3].



Ground Truth S-Ray w/o ft NeuRay w/o ft S-Ray ft 2k iters NeRF w/ 200k iters

Figure 4. Qualitative results of scene rendering for generalization (w/o ft) and fine-tuning settings (ft) in real data [3]. Adding a color
head from the geometry-aware network, We compare our method S-Ray with the generalizable rendering method NeuRay [4] and Valina
NeRF [6] with 200k iterations.



Steps Method mIoU(%) Average Accuracy(%) Total Accuracy(%) PSNR

0 Ours 77.22 81.68 88.53 29.47
Semantic NeRF - - - -

2k Ours 92.66 98.73 98.73 29.80
Semantic NeRF 78.32 82.69 85.81 20.62

4k Ours 93.40 98.97 98.97 29.86
Semantic NeRF 86.97 86.61 87.48 21.85

6k Ours 94.17 99.06 99.06 29.92
Semantic NeRF 87.08 87.85 88.01 22.62

8k Ours 94.59 99.15 99.15 29.95
Semantic NeRF 88.78 88.57 89.67 22.94

30k Ours 95.10 99.43 99.42 30.05
Semantic NeRF 91.78 94.86 95.78 24.78

100k Ours - - - -
Semantic NeRF 95.05 98.73 99.02 29.97

Table 13. Performance of per-scene optimization in ScanNet [3]. We compare our method S-Ray with Semantic-NeRF [10] in per-scene
optimization to show our fast generalizability in real data. Specifically, we choose the unseen scene0160 02 for comparison.


