
Single Image Depth Prediction Made Better: A Multivariate Gaussian Take
—Supplementary Material—

Ce Liu1 Suryansh Kumar1* Shuhang Gu2 Radu Timofte1,3 Luc Van Gool1,4
1CVL ETH Zürich 2UESTC China 3University of Würzburg 4KU Leuven

{ce.liu, sukumar, vangool}@vision.ee.ethz.ch
shuhanggu@uestc.edu.cn, radu.timofte@uni-wuerzburg.de

Abstract

Our supplementary material accompanies the main pa-
per and is organized as follows. Firstly, it contains detailed
mathematical derivations of the proposed loss function and
the covariance of the mixture of Gaussian. Secondly, de-
tails related to our neural network design and likelihood
computation are presented to understand our implementa-
tion better. Next, more ablation studies are presented. Fi-
nally, visualization of our learned covariance and qualita-
tive SIDP results on several benchmark datasets are pre-
sented for completeness.

1. Derivations
We present the detailed derivations for the negative log

likelihood, and the covariance matrix for the mixture of
Gaussian distributions.

1.1. Low-Rank Negative Log Likelihood

We start with the standard multivariate Gaussian dis-
tribution with mean µθ(I) ∈ RN×1 and covariance
Σθ(I, I) ∈ RN×N :

Φ(Z|θ, I) = N
(
µθ(I),Σθ(I, I)

)
. (1)

The log probability density function is:

log Φ(Z|θ, I) = −N

2
log 2π − 1

2
log det(Σθ(I, I))−

1

2
(Z − µθ)

T (Σθ(I, I))
−1(Z − µθ).

(2)

We make the low-rank assumption:

Σθ(I, I) = Ψθ(I)Ψθ(I)
T + σ2eye(N) (3)

where Ψθ(I) ∈ RN×M and M ≪ N , to ease the comput-
ing of the determinant and the inversion term.

*Corresponding Author (k.sur46@gmail.com)

Determinant: We follow the matrix determinant lemma
[6] to simplify the computation of the determinant term
in Eq.(2). The determinant of the matrix Ψθ(I)Ψθ(I)

T +
σ2eye(N) ∈ RN×N is computed by

det(Ψθ(I)Ψθ(I)
T + σ2eye(N))

=det(σ2eye(N)) det(eye(M) + ΨT
θ (σ

−2eye(N))Ψθ)

=σ2N det(eye(M) + σ−2ΨT
θ (I)Ψθ(I))

(4)

The complexity of time and space for computing the deter-
minant of the matrix eye(M)+σ−2ΨT

θ (I)Ψθ(I) ∈ RM×M

is O(M3) [8].
Inversion: Then we use the matrix inversion lemma [6]
to ease the computation of the inversion of the matrix
Ψθ(I)Ψθ(I)

T + σ2eye(N) ∈ RN×N :

(Ψθ(I)Ψθ(I)
T + σ2eye(N))−1

=− (σ2eye(N))−1Ψθ(eye(M) + σ−2ΨT
θ Ψθ)

−1

ΨT
θ (σ

2eye(N))−1 + (σ2eye(N))−1

=σ−2eye(N)− σ−4Ψθ(eye(M) + σ−2ΨT
θ Ψθ)

−1ΨT
θ

(5)

Again, computing the inversion of the term eye(M) +
σ−2ΨT

θ Ψθ ∈ RM×M requires time and space complexity
O(M3).
Total: We put the Eq.(4) and Eq.(5) into Eq.(2), then we
can easily obtain:

log Φ(Z|θ, I) = −N

2
log 2πσ2 − 1

2
log det(A)−

σ−2

2
rT r+

σ−4

2
rTΨθ(I)A

−1Ψθ(I)
T r

(6)

where, r = Z − µθ(I), and A = σ−2Ψθ(I)
TΨθ(I) +

eye(M).

(a)

Refine Refine

...

...

...
Conv

L-ReLU

Conv Conv

Cat

New New

Conv

IN

Cat

Upsampled

L-ReLU

Conv

New

Conv

Add

Upsample

(b) (c)

Figure 1. (a) The architecture of the U-decoder. (b) The detailed structure of the refine module. (c) The detailed structure of the fusion
module. We use L-ReLU to represent the LeakyReLU operation, and IN to represent the instance normalization layer.

1.2. Covariance of Mixture of Gaussian

We present the covariance matrix of the mixture of Gaus-
sian distributions:

Φ(Z|I,D) =
1

S

∑
s

Φ(Z|θs, I) (7)

where Φ(Z|θs, I) is the probability density function for a
single Gaussian distribution. By the law of total variance
[11], we obtain:

Var(Z) =E[Var(Z|s)] + Var(E[Z|s])

=
1

S

∑
s

(Ψ(s)Ψ(s)T + σ2eye(M))

+
1

S

∑
s

(u(s) − µ̄)(u(s) − µ̄)T

=σ2eye(N) +
∑
s

1√
S
Ψ(s) 1√

S
Ψ(s)T

+
∑
s

1√
S
(u(s) − µ̄)

1√
S
(u(s) − µ̄)T

(8)

By constructing the following matrix:

Ψ̄ =
1√
S
concat(Ψ(1), . . . ,Ψ(S),µ(1)−µ̄, . . . ,µ(S)−µ̄),

(9)
the covariance matrix can be written as Ψ̄Ψ̄T + σ2eye(N),
which shares the same form as Eq.(3).

2. Implementation Details
In this section, we present the details for the network

architecture design and the likelihood computation.

2.1. Network Architecture

We introduce the details about the network architecture.
The network is comprised of (a) encoder, (b) U-decoder,

and (c) K-decoder. In general, we set the kernel size of the
convolution layers to be 3 unless otherwise stated.

(a) Encoder. We adopt the standard Swin-Large [5] as our
encoder. More specifically, the patch size is 4, the window
size is 12, and the embedding dim is 192. The numbers
of feature channels in four stages are 192, 384, 768, 1536,
respectively. And there are 2, 2, 18, 2 blocks in the four
stages, respectively. We collect the output feature map from
the last block in each stage into F = {F1,F2,F3,F4},
where F1 has 192 channels and stride 4, F2 has 384 chan-
nels and stride 8, F3 has 768 channels and stride 16, F4 has
1536 channels and stride 32.

(b) U-Decoder. The input to the U-decoder is F =
{Fi}4i=1. From the input, the U-decoder will predict a set
of depth maps {µi

θ}4i=1. The network architecture of U-
decoder is shown in Fig.1 (a). We start with F4, which has
1536 channels and stride 32. We first predict the µ4

θ though
a convolution layer, which has 1536 input channels and 128
output channels. We utilize a refine module to refine the F4

and µ4
θ. The refine module is shown in Fig. 1 (b). Then we

upsample the F4 via bi-linear interpolation. The upsampled
F4 will be concatenated with the F3 from the encoder. Then
we adopt a fusion module to fuse the information from the
F3 and the upsampled F4. The fusion module is shown in
Fig. 1 (c). The fused F3 has 512 channels and stride 16.
We upsample the µ4

θ to µ3
θ via bi-linear interpolation. Sim-

ilar to the above procedures, the F3 will be refined with µ3
θ,

and then upsampled and fused with F2 from the encoder.
The fused F2 has 256 channels and stride 8. The µ3

θ is
also upsampled to µ2

θ via bi-linear interpolation. With the
same operations, we can further obtain the F1, which has
64 channels and stride 4. And we can also obtain µ1

θ. Now
µ1

θ, µ2
θ, µ3

θ, µ4
θ all have 128 channels. We upsample them

to stride 1 via bi-linear operation, and compress the number
of channels to 1 via a convolution layer.

(c) K-Decoder. The K-decoder aims to predict the Ψθ. The
input to the K-decoder is F = {Fi}4i=1. The architecture

(a) Image 1 (b) Image 2 (c) Image 3

Figure 2. Visualization of Covariance. Top: test image. Bottom:
covariance with respect to the pixel which is marked as a green
cross. The yellow and light regions have higher covariance than
the blue and dark ones.

of K-decoder is similar to U-decoder, except for there is no
depth map predictions and refine modules. More specifi-
cally, we first upsample F4 via bi-linear interpolation, then
fuse with the F3 though the fusion module. The fusion
module is the same as the one in the U-decoder. The fused
F3 has 512 channels and stride 16. Similar to the above pro-
cedures, we can further obtain the fused F2 and the fused
F1. The fused F2 has 256 channels, and the fused F1 has
128 channels. We predict Ψθ from F1 by a convolution
layer that has 128 input channels and 128 output channels.

2.2. Likelihood Computation

We provide the pseudo code to compute the log likeli-
hood in Algorithm 1.

Algorithm 1 Log Likelihood Computation
Input: µθ(I) ∈ RN×1, Ψθ(I) ∈ RN×M , σ ∈ R+,
and Zgt ∈ RN×1

Output: log Φ(Zgt|θ, I)
1: r = Zgt − µθ(I)
2: p = Ψθ(I)

T r
3: A = σ−2Ψθ(I)

TΨθ(I) + eye(M)
4: LLT = cholesky(A)
5: q = L\p ▷ Or: q = inv(L) ∗ p
6: Return −N

2 log 2πσ2 −
∑

i logLii − σ−2

2 rT r +
σ−4

2 qTq

3. More Ablations
In this section, we provide more ablation studies.

3.1. Comparison with Deep Evidential Regression

We compare with the Deep Evidential Regression [1] on
NYU Depth V2 test set [9] and KITTI Eigen split [3]. We
present the experimental results in Tab. 1. Our approach

achieves better depth prediction accuracy and uncertainty
estimation.

Dataset Loss SILog ↓ NLL ↓ RMS ↓ δ1 ↑

NYU DER 9.253 0.118 0.330 0.927
Ours 8.323 -1.342 0.311 0.933

KITTI DER 7.500 1.072 0.225 0.971
Ours 6.757 -0.222 0.202 0.976

Table 1. Comparison with Deep Evidential Regression (DER).

3.2. FPS with K-Decoder

In general K-Decoder is used only at train time. The
K-Decoder can be abandoned at test time for SIDP if un-
certainty information is not required. For completeness, we
present the FPS information at test time in Tab. 2.

K-Decoder SI Log ↓ FPS
w/o 8.323 9.909
w/ 8.323 8.445

Table 2. SI Log error and corresponding FPS on NYU Dataset.

4. Visualization of Learned Covariance

To understand the covariance learned by the proposed
negative log likelihood loss function, we visualize the co-
variance for selected pixels. More specifically, for each im-
age we select a pixel (marked as a green cross), and visu-
alize the covariance between the pixel and all other pixels.
The results are shown in Fig. 2. We observe that the pixels
from nearby regions or the same objects usually have higher
covariance.

5. Qualitative Results

We provide more qualitative results on NYU Depth V2
[9], KITTI Eigen split [3,4] and SUN RGB-D [10] in Fig. 3,
Fig. 4, Fig. 5, respectively. The depth prediction from our
method contains more details about the scenes, especially
in NYU Depth V2 and SUN RGB-D.

References
[1] Alexander Amini, Wilko Schwarting, Ava Soleimany, and

Daniela Rus. Deep evidential regression. Advances in Neural
Information Processing Systems, 33:14927–14937, 2020.

[2] Shariq Farooq Bhat, Ibraheem Alhashim, and Peter Wonka.
Adabins: Depth estimation using adaptive bins. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 4009–4018, 2021.

[3] David Eigen, Christian Puhrsch, and Rob Fergus. Depth map
prediction from a single image using a multi-scale deep net-
work. Advances in neural information processing systems,
27, 2014.

(a) Test (b) DPT [7] (c) AdaBins [2] (d) NeWCRFs [12] (e) Ours

Figure 3. Qualitative Comparison on NYU Depth V2 test set [9]. Our method recovers better depth even for complex scenes than the
prior art such as (b) DPT [7], (c) AdaBins [2], (d) NeWCRFs [12].

(a) Image 1 (b) Image 2 (c) Image 3

(d) Image 4 (e) Image 5 (f) Image 6

Figure 4. Qualitative comparison on KITTI Eigen split [3]. For each column, from top to bottom we present the input image, the
prediction from DPT [7], AdaBins [2], NeWCRFs [12], and our framework respectively.

[4] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we
ready for autonomous driving? the kitti vision benchmark

suite. In 2012 IEEE conference on computer vision and pat-
tern recognition, pages 3354–3361. IEEE, 2012.

(a) Test (b) AdaBins [2] (c) NeWCRFs [12] (d) Ours

Figure 5. Qualitative Comparison on SUN RGB-D [10]. All the methods are trained on NYU Depth V2 [9] without fine-tuning on SUN
RGB-D. Our method generalizes better on unseen scenes than (b) AdaBins [2] and (c) NeWCRFs [12].

[5] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng
Zhang, Stephen Lin, and Baining Guo. Swin transformer:
Hierarchical vision transformer using shifted windows. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 10012–10022, 2021.

[6] William H. Press, Saul A. Teukolsky, William T. Vetterling,
and Brian P. Flannery. Numerical Recipes in C. Cambridge
University Press, Cambridge, USA, second edition, 1992.

[7] René Ranftl, Alexey Bochkovskiy, and Vladlen Koltun. Vi-
sion transformers for dense prediction. In Proceedings of
the IEEE/CVF International Conference on Computer Vi-
sion, pages 12179–12188, 2021.

[8] Carl Edward Rasmussen. Gaussian processes in machine
learning. In Summer school on machine learning, pages 63–
71. Springer, 2003.

[9] Nathan Silberman, Derek Hoiem, Pushmeet Kohli, and Rob
Fergus. Indoor segmentation and support inference from
rgbd images. In European conference on computer vision,
pages 746–760. Springer, 2012.

[10] Shuran Song, Samuel P Lichtenberg, and Jianxiong Xiao.
Sun rgb-d: A rgb-d scene understanding benchmark suite. In
Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 567–576, 2015.

[11] N.A. Weiss, P.T. Holmes, and M. Hardy. A Course in Prob-
ability. Pearson Addison Wesley, 2006.

[12] Weihao Yuan, Xiaodong Gu, Zuozhuo Dai, Siyu Zhu, and
Ping Tan. Neural window fully-connected crfs for monocular
depth estimation. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
pages 3916–3925, June 2022.

	. Derivations
	. Low-Rank Negative Log Likelihood
	. Covariance of Mixture of Gaussian

	. Implementation Details
	. Network Architecture
	. Likelihood Computation

	. More Ablations
	. Comparison with Deep Evidential Regression
	. FPS with K-Decoder

	. Visualization of Learned Covariance
	. Qualitative Results

