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This document contains the following materials as supplements to the main manuscript:

• Theoretical derivation of Prop. 1 in the main paper.

• Full quantitative comparisons of the main paper and results on more datasets and settings.

• More experimental analysis of the proposed algorithm.

• Results in more settings of continual learning and federated learning.

A. Theoretical Derivations
We explore a significance-aware parameterization for synthetic datasets in this paper. A synthetic dataset (Xs, Ys) is

parameterized by (U,Σ, Vx, Vy):

• Vx ∈ Rb×d and Vy ∈ Rb×c denote orthogonal bases for constructing samples and labels respectively, where b is the
total number of components;

• Σ = diag(s1, . . . , sb) with s1 ≥ · · · ≥ sb is a diagonal matrix, where each si denotes the significance of the i-th
component;

• U ∈ Rns×b is an orthogonal matrix representing coefficients of different components for constructing each data.

The synthetic samples and corresponding labels are constructed by:

Xs = UΣVx, Ys = UΣVy. (1)

In implementation, samples of each class share the same U and Σ for memory efficiency. We find that it is possible to simply
discard less important components when we need to slim a synthetic dataset, i.e., deleting the entries with least singular
values in Σ, the corresponding columns in U , and the corresponding rows in Vx and Vy , which has the potential to serve as
either a learning-free slimmable DC strategy or a strong initialization for learning-based slimmable DC. Theoretically, in the
case of linear regression, the error on the resultant solution plane satisfies the following proposition:

Proposition 1. In linear regression, if a synthetic dataset (Xs, Ys) takes the parameterization in Eq. 1, and rows in Vx and
Vy corresponding to the least singular values in Σ, denoted as Ṽx and Ṽy , are removed for slimmable DC, the first-order
parameter distance between parameters before and after slimming is bounded by:

∥w′1
s − w1

s∥22 ≤ s22∥Xsw − Ys∥22, (2)

and the infinity-order parameter distance is bounded by:

∥X ′
s
†
Y ′
s −Xs

†Ys∥22 = ∥Ṽx
⊤
Ṽy∥22 ≤ 1. (3)
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Proof. Let Σ̂ and Σ̃ denote diagonal matrices with the largest and the least singular values in Σ, V̂x and V̂y denote rows in
Vx and Vy corresponding to the largest singular values in Σ, Ṽx and Ṽy denote rows in Vx and Vy corresponding to the least
ones, Û denote columns in U corresponding to the largest singular values in Σ, and Ũ denote columns in U corresponding to
the least ones. We have X ′

s = Û Û⊤Xs and Y ′
s = Û Û⊤Ys, which can be verified by:

Û Û⊤Xs = Û Û⊤ [
Û Ũ

] [Σ̂ 0

0 Σ̃

] [
V̂x

Ṽx

]
=

[
Û 0

] [Σ̂ 0

0 Σ̃

] [
V̂x

Ṽx

]
= Û Σ̂V̂x = X ′

s.

(4)

For Y ′
s , the verification is similar. Then, for the first-order parameter distance,

∥w′1
s − w1

s∥22 = ∥X ′
s
⊤
(X ′

sw − Y ′
s )−X⊤

s (Xsw − Ys)∥22
= ∥(Û Û⊤Xs)

⊤(Û Û⊤Xsw − Û Û⊤Ys)−X⊤
s (Xsw − Ys)∥22

= ∥X⊤
s Û Û⊤Û Û⊤(Xsw − Ys)−X⊤

s (Xsw − Ys)∥22
= ∥(X⊤

s Û Û⊤ −X⊤
s )(Xsw − Ys)∥22

≤ ∥X⊤
s −X⊤

s Û Û⊤∥22∥Xsw − Ys∥22
= ∥(UΣVx)

⊤ − (UΣVx)
⊤Û Û⊤∥22∥Xsw − Ys∥22

= ∥V ⊤
x Σ

[
Û⊤

Ũ⊤

]
− V ⊤

x Σ

[
Û⊤

Ũ⊤

]
Û Û⊤∥22∥Xsw − Ys∥22

= ∥V ⊤
x Σ(

[
Û⊤

Ũ⊤

]
−
[
Û⊤

0

]
)∥22∥Xsw − Ys∥22

= ∥
[
V̂x

⊤
Ṽx

⊤
] [

Σ̂ 0

0 Σ̃

] [
0

Ũ⊤

]
∥22∥Xsw − Ys∥22

= ∥Ṽx
⊤
Σ̃Ũ⊤∥22∥Xsw − Ys∥22

≤ σ2
2∥Xsw − Ys∥22,

(5)

where the last inequality holds since the component corresponding to the largest singular value σ1 would always be kept and
singular value of deleted components is σ2 at most.

For the infinity-order parameter distance,

∥X ′
s
†
Y ′
s −Xs

†Ys∥22 = ∥X ′
s
⊤
(X ′

sX
′
s
⊤
)−1Y ′

s −X⊤
s (XsX

⊤
s )−1Ys∥22

= ∥X⊤
s Û Û⊤(Û Û⊤XsX

⊤
s Û Û⊤)−1Û Û⊤Ys −X⊤

s (XsX
⊤
s )−1Ys∥22

= ∥X⊤
s Û Û⊤Û Û⊤(XsX

⊤
s )−1Û Û⊤Û Û⊤Ys −X⊤

s (XsX
⊤
s )−1Ys∥22

= ∥V ⊤
x ΣU⊤Û Û⊤(UΣVxV

⊤
x ΣU⊤)−1Û Û⊤UΣVy − V ⊤

x ΣU⊤(UΣVxV
⊤
x ΣU⊤)−1UΣVy∥22

= ∥V ⊤
x ΣU⊤Û Û⊤U(Σ2)−1U⊤Û Û⊤UΣVy − V ⊤

x ΣU⊤U(Σ2)−1U⊤UΣVy∥22

= ∥
[
V̂x

⊤
Ṽx

⊤
] [

Σ̂ 0

0 Σ̃

] [
Û⊤

Ũ⊤

]
Û Û⊤ [

Û Ũ
] [Σ̂2 0

0 Σ̃2

]−1 [
Û⊤

Ũ⊤

]
Û Û⊤ [

Û Ũ
] [Σ̂ 0

0 Σ̃

] [
V̂y

Ṽy

]
−
[
V̂x

⊤
Ṽx

⊤
]
Σ(Σ2)−1Σ

[
V̂y

Ṽy

]
∥22

= ∥V̂x
⊤
V̂y − V̂x

⊤
V̂y − Ṽx

⊤
Ṽy∥22

= ∥Ṽx
⊤
Ṽy∥22 ≤ ∥Ṽx∥22∥Ṽy∥22 = 1,

(6)



IPC 50 20 10 5 2 1

DC [14]

RT 82.89±0.16 84.37±0.23 83.38±0.28 80.54±0.14 76.07±0.31 70.27±0.71
LBS - 79.60±0.32 75.42±0.42 67.92±0.39 61.34±0.97 57.35±1.66
Gap↓ - 4.77 7.96 12.62 14.73 12.92
LFS - 72.25±0.53 70.22±0.36 56.39±0.49 54.79±0.74 34.84±0.82

DSA [12]

RT 88.73±0.08 86.68±0.16 85.27±0.13 81.99±0.25 76.66±0.24 70.33±0.72
LBS - 86.08±0.16 83.32±0.19 79.17±0.30 70.29±0.65 51.58±1.19
Gap↓ - 0.60 1.95 2.82 6.37 18.75
LFS - 79.86±0.29 74.14±0.18 71.27±0.21 54.63±0.56 43.81±1.46

DM [13]

RT 88.20±0.27 86.21±0.21 83.84±0.16 80.89±0.21 74.42±0.24 71.45±0.49
LBS - 85.92±0.14 83.21±0.27 80.21±0.16 73.78±0.25 70.69±0.49
Gap↓ - 0.29 0.63 0.68 0.64 0.76
LFS - 81.05±0.27 78.56±0.05 68.04±0.49 59.22±0.53 58.48±0.43

IDC [4]

RT 89.06±0.15 86.81±0.21 85.16±0.35 83.13±0.14 77.96±0.16 70.64±0.37
LBS - 84.81±0.29 83.36±0.24 81.16±0.23 76.52±0.49 67.73±1.00
Gap↓ - 2.00 1.80 1.97 1.44 2.91
LFS - 82.57±0.23 77.02±0.28 74.41±0.50 60.86±0.88 52.75±1.41

FRePo [15]

RT 89.15±0.13 87.44±0.21 85.54±0.15 83.80±0.21 79.91±0.44 75.44±0.45
LBS - 86.60±0.38 81.53±0.38 67.74±0.49 33.44±1.79 29.24±2.25
Gap↓ - 0.84 4.01 16.06 46.47 46.20
LFS - 82.59±0.17 75.65±0.34 71.76±0.28 61.94±0.75 44.00±1.92

Ours

RT 88.68±0.15 87.50±0.13 86.65±0.08 83.54±0.34 79.63±0.82 74.14±0.31
LBS - 86.81±0.07 85.18±0.21 83.62±0.20 78.58±0.71 72.74±0.67
Gap↓ - 0.69 1.47 -0.08 1.05 1.40
LFS - 82.96±0.21 76.71±0.36 74.72±0.45 69.52±0.47 66.43±0.76

Table 1. Comparisons with existing typical DC algorithms on the performance of slimmable DC on FashionMNIST. IPC: number of images
per class. RT: retraining using original datasets. LBS: learning-based slimming. LFS: learning-free slimming.

IPC 50 20 10 5 2 1

DC [14]

RT 53.43±0.28 49.73±0.27 43.74±0.41 39.88±0.50 38.89±0.31 28.20±0.71
LBS - 45.59±0.35 39.83±0.53 35.45±0.58 29.65±0.46 23.00±0.58
Gap↓ - 4.14 3.91 4.43 9.24 5.20
LFS - 41.82±0.59 32.66±0.15 25.88±0.36 18.76±0.25 17.37±0.29

DSA [12]

RT 60.58±0.29 57.11±0.22 52.15±0.48 47.31±0.26 34.23±0.26 28.10±0.72
LBS - 52.77±0.35 46.55±0.64 39.51±0.37 30.07±0.43 20.48±0.17
Gap↓ - 4.34 5.60 7.80 4.16 7.62
LFS - 41.54±0.43 29.29±0.25 27.56±0.21 20.10±0.32 14.05±0.26

DM [13]

RT 62.94±0.28 55.41±0.55 48.80±0.31 42.89±0.28 33.50±0.50 27.08±0.36
LBS - 56.47±0.42 49.89±0.19 43.57±0.38 34.35±0.74 26.67±0.83
Gap↓ - -1.06 -1.09 -0.68 -0.85 0.41
LFS - 46.76±0.52 35.35±0.75 25.34±0.34 16.05±0.34 13.81±0.45

IDC [4]

RT 69.32±0.30 62.01±0.28 58.50±0.39 52.13±0.66 44.12±0.78 35.34±0.87
LBS - 58.77±0.23 54.24±0.35 47.83±0.75 38.61±0.69 29.16±1.41
Gap↓ - 3.24 4.26 4.30 5.51 6.18
LFS - 51.91±0.49 42.17±0.49 30.20±0.36 22.84±0.54 17.68±0.71

FRePo [15]

RT 71.03±0.34 68.63±0.53 65.76±0.72 61.07±0.31 53.24±0.37 43.24±0.32
LBS - 65.64±0.30 53.76±0.92 38.02±1.03 17.31±0.38 11.01±0.38
Gap↓ - 2.99 12.00 23.05 35.93 32.23
LFS - 59.14±0.73 50.48±0.19 38.34±0.88 29.60±0.60 18.22±0.55

Ours

RT 70.33±0.34 67.60±0.22 64.57±0.24 59.49±0.19 52.88±0.73 43.56±0.43
LBS - 67.93±0.48 63.96±0.59 61.05±0.32 55.82±0.46 47.77±0.35
Gap↓ - -0.33 0.61 -1.56 -2.94 -4.21
LFS - 62.05±0.29 48.89±0.54 40.48±0.34 36.51±0.16 33.09±0.29

Table 2. Comparisons with existing typical DC algorithms on the performance of slimmable DC on CIFAR10. IPC: number of images per
class. RT: retraining using original datasets. LBS: learning-based slimming. LFS: learning-free slimming.

B. Quantitative Comparisons
Here, we provide full quantitative comparison results with previous methods on 5 widely-adopted benchmarks including

FashionMNIST [11], CIFAR10, CIFAR100 [5], Tiny-ImageNet [6], and ImageNette [3]1. The number of classes is 10, 10,
100, 200, and 10 and the resolution is 28, 32, 32, 64, and 128, respectively. The protocol for comparison maintains the same

1For experiments on Tiny-ImageNet and ImageNette, we load the publicly-available pre-trained synthetic datasets of FRePo.



IPC 20 10 5 2 1

DC [14]

RT 28.93±0.26 25.08±0.17 21.29±0.15 16.46±0.39 12.44±0.18
LBS - 21.28±0.33 17.07±0.25 12.63±0.21 9.34±0.22
Gap↓ - 3.80 4.22 3.83 3.10
LFS - 21.78±0.32 13.30±0.28 6.74±0.21 4.64±0.05

DSA [12]

RT 36.35±0.18 32.49±0.30 27.35±0.42 20.47±0.06 13.81±0.21
LBS - 29.89±0.27 24.34±0.27 17.61±0.41 11.62±0.14
Gap↓ - 2.60 3.01 2.86 2.19
LFS - 23.69±0.34 14.92±0.25 8.06±0.12 4.95±0.12

DM [13]

RT 34.39±0.30 29.33±0.23 23.91±0.23 15.98±0.14 11.51±0.25
LBS - 30.84±0.21 24.74±0.34 16.47±0.16 11.62±0.40
Gap↓ - -1.51 -0.83 -0.49 -0.11
LFS - 26.72±0.20 15.69±0.31 7.95±0.22 5.22±0.11

IDC [4]

RT 41.99±0.23 36.08±0.38 30.68±0.17 23.34±0.19 17.93±0.15
LBS - 35.16±0.27 28.29±0.18 18.39±0.17 13.40±0.31
Gap↓ - 0.92 2.39 4.95 4.53
LFS - 30.25±0.16 19.50±0.17 10.96±0.14 7.63±0.11

FRePo [15]

RT 40.57±0.26 39.97±0.32 36.34±0.21 31.63±0.26 27.07±0.26
LBS - 35.53±0.36 32.08±0.55 26.51±0.36 19.27±0.59
Gap↓ - 4.44 4.26 5.12 7.80
LFS - 35.18±0.32 30.00±0.59 19.94±0.28 13.63±0.12

Ours

RT 42.47±0.20 40.29±0.36 36.42±0.21 32.28±0.14 26.75±0.34
LBS - 36.23±0.46 33.49±0.55 29.27±0.36 26.04±0.38
Gap↓ - 4.06 2.93 3.01 0.71
LFS - 35.39±0.04 28.58±0.18 23.69±0.31 20.34±0.26

Table 3. Comparisons with existing typical DC algorithms on the performance of slimmable DC on CIFAR100. IPC: number of images
per class. RT: retraining using original datasets. LBS: learning-based slimming. LFS: learning-free slimming.

IPC 10 5 2 1

FRePo [15] LBS 26.86±0.05 20.06±0.18 14.12±0.26 10.22±0.17
LFS 26.86±0.05 20.49±0.29 14.17±0.07 9.82±0.05

Ours LBS 26.80±0.17 21.06±0.05 18.21±0.21 16.21±0.44
LFS 26.80±0.17 20.74±0.15 15.30±0.14 12.92±0.14

Table 4. Comparisons with the baseline FRePo on the performance of slimmable DC on Tiny-ImageNet. IPC: number of images per class.
LBS: learning-based slimming. LFS: learning-free slimming.

IPC 10 5 2 1

FRePo [15] LBS 67.23±0.74 42.65±0.24 19.74±0.22 12.49±0.54
LFS 67.23±0.74 55.37±0.32 33.59±0.41 21.44±0.37

Ours LBS 67.67±0.35 60.36±0.64 53.57±0.59 44.88±1.15
LFS 67.67±0.35 55.76±1.03 48.97±0.61 39.54±0.39

Table 5. Comparisons with the baseline FRePo on the performance of slimmable DC on ImageNette. IPC: number of images per class.
LBS: learning-based slimming. LFS: learning-free slimming.

as that in the main paper: we compress a real dataset to a relatively large synthetic one and then perform successive slimmable
condensations. Results for the 5 datasets are shown in Tabs. 1, 2, 3, 4, and 5, respectively. Results for cross-architecture
performance can be found in Tabs. 6, 7, 8, 9, and 10. All results are based on 5 repeated evaluations and we report the
average results and the standard deviations. The conclusion is consistent with that in the main paper.

Although some works also focus on synthetic dataset parameterization [1,7] to boost the performance of DC, as mentioned
in the related work section of the main paper, the highlight of this paper is on the co-design of parameterization and loss terms,
which makes it suitable for slimmable DC. Since previous works do not take significance of various components into account,
their LFS performances are unsatisfactory as shown in the 3rd, 4th, and 10th cols. of Tab. 11.

The main analysis of this paper is on the state-of-the-art methods, which are based on kernel ridge regression (KRR) [8–
10, 15]. In Tab.1 of the main paper, we also present some insights on a wider spectrum of methods including those based
on gradient-matching and distribution matching. Here, we further provide experimental results for methods based on back-
propagation-through-time (BPTT) and matching-training-trajectory (MTT) in Tab. 11. For BPTT, the difference with KRR



IPC 20 10 5 2 1

ResNet FRePo 84.00±0.71 76.78±0.78 59.01±2.42 37.26±3.34 31.44±2.56
Ours 85.41±0.29 82.60±1.06 78.07±1.74 71.21±0.61 56.93±0.43

AlexNet FRePo 84.20±0.17 78.69±0.16 58.73±2.39 34.47±3.87 37.53±1.87
Ours 85.64±0.09 82.32±0.03 78.60±0.56 70.53±0.84 52.59±2.25

VGG FRePo 79.60±0.63 71.48±0.48 51.99±1.34 39.80±1.21 28.37±2.02
Ours 80.86±0.39 76.96±0.42 73.19±0.77 57.61±3.48 39.15±1.96

Table 6. Comparisons with the baseline FRePo on cross-architecture performance of slimmable DC on FashionMNIST. IPC: number of
images per class. LBS: learning-based slimming. LFS: learning-free slimming.

IPC 20 10 5 2 1

ResNet FRePo 53.22±1.74 39.34±1.57 23.97±1.00 14.09±0.67 11.60±0.28
Ours 56.24±1.05 49.41±0.89 43.73±2.63 32.74±1.19 25.56±1.02

AlexNet FRePo 59.65±0.21 44.03±0.93 29.24±0.39 14.85±1.22 11.76±0.36
Ours 63.91±0.29 57.33±0.34 53.74±1.30 45.27±1.10 36.27±0.63

VGG FRePo 50.72±0.83 34.79±1.40 23.11±1.05 12.93±1.27 10.69±0.89
Ours 54.78±1.70 43.78±0.39 37.43±1.35 32.31±1.54 28.02±0.89

Table 7. Comparisons with the baseline FRePo on cross-architecture performance of slimmable DC on CIFAR10. IPC: number of images
per class. LBS: learning-based slimming. LFS: learning-free slimming.

IPC 10 5 2 1

ResNet FRePo 26.14±1.49 18.82±0.82 13.69±0.68 8.63±0.14
Ours 26.75±0.99 20.60±1.17 16.92±0.48 12.43±0.22

AlexNet FRePo 33.75±0.09 26.97±0.22 19.58±0.11 11.68±0.25
Ours 34.85±0.20 29.07±0.25 24.56±0.35 17.27±0.23

VGG FRePo 28.88±0.41 21.66±0.63 12.69±0.16 6.62±0.23
Ours 29.65±0.48 24.23±0.41 18.30±0.10 13.90±0.42

Table 8. Comparisons with the baseline FRePo on cross-architecture performance of slimmable DC on CIFAR100. IPC: number of images
per class. LBS: learning-based slimming. LFS: learning-free slimming.

IPC 5 2 1

ResNet FRePo 10.01±0.78 5.91±0.58 4.73±0.48
Ours 10.66±0.58 8.58±0.72 7.15±0.86

AlexNet FRePo 15.46±0.28 10.80±0.35 7.50±0.26
Ours 17.75±0.28 14.83±0.34 12.76±0.53

VGG FRePo 15.01±0.26 9.22±0.13 5.94±0.27
Ours 17.64±0.36 15.24±0.39 13.49±0.29

Table 9. Comparisons with the baseline FRePo on cross-architecture performance of slimmable DC on Tiny-ImageNet. IPC: number of
images per class. LBS: learning-based slimming. LFS: learning-free slimming.

IPC 5 2 1

ResNet FRePo 33.97±2.41 16.72±1.23 13.58±0.51
Ours 42.29±1.26 37.37±2.97 28.45±1.86

AlexNet FRePo 40.59±1.24 17.82±1.37 12.37±1.09
Ours 53.55±0.38 48.56±1.42 40.43±1.25

VGG FRePo 34.11±1.96 17.57±2.98 11.93±0.41
Ours 50.13±3.61 45.71±1.95 35.64±0.51

Table 10. Comparisons with the baseline FRePo on cross-architecture performance of slimmable DC on ImageNette. IPC: number of
images per class. LBS: learning-based slimming. LFS: learning-free slimming.

is that the model becomes non-linear. Linear models as analyzed in the paper suffer from the problem of underdetermined
solution space. Based on results in the 5th and 6th cols. of Tab. 11, the non-linearity does not get rid of this issue. For MTT,



IPC RS Deng et al. [1] Liu et al. [7] BPTT MTT Ours
LFS LFS RT LBS RT LBS RT LFS LBS w/o Param. LBS

10 (Original) 31.60 71.20 69.90 63.94 - 64.10 - 64.57 - - -
10 → 5 24.82 39.44 34.98 59.59 53.23 57.92 36.29 59.49 42.90 58.51 60.96
5 → 1 16.68 27.36 18.83 48.71 34.14 45.69 18.83 43.56 33.87 43.21 46.82

Table 11. More comparisons with existing methods and more ablation studies in the setting of slimmable DC on CIFAR10. IPC: number
of images per class. LBS: learning-based slimming. LFS: learning-free slimming. RS: randomly selected real images.

(b)
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(a) Figure 1. Sensitivity analysis of hyper-parameters.
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Figure 2. Distribution of top 25 significance scores for 50 IPC of CIFAR10.

LFS s1 Only s1 and s2

50 → 2 36.51 37.32
50 → 1 33.09 31.84

Table 12. Impact of including more terms to Lskew.

matching gradients for only a limited number of steps may suffer from the error accumulation problem: alignment error can
be amplified over successive condensation [2]. It turns out that the one-step and infinity-step matching proposed in this paper
can suppress the issue most effectively. Although, as mentioned in the main paper, generating hundreds of teacher training
trajectories is inefficient in both time and memory for slimmable DC, we still provide the results in the 7th and 8th cols. of
Tab. 11 regardless of efficiency. The large gap reflects significant error accumulation problem.

C. More Analysis
Sensitivity Analysis of Hyper-Parameters: We provide sensitivity analysis of hyper-parameters on CIFAR10: λ1

pm,
λskew, and λortho in Fig. 1(a). We observe that the performance is relatively not sensitive to their values when they are set
small. Too large weights may decrease the power of infinity-order parameter matching L∞

pm and impair the final performance.
We also conduct joint analysis for these hyper-parameters in Fig. 1(b), for 20 IPC. The results are insensitive to their values
(1.2% gap in maximal) and all closed to RT (67.6%).

Studies on Significance Scores: We provide a visualization of the distribution of top 25 significance scores for 50 IPC of
CIFAR10 in Fig. 2 and there is a long-tailed effect. Moreover, if we know the minimal IPC, we can add the corresponding
number of components to Lskew instead of merely including s1; if not, we only regulate s1 by default. In experiments of
Tab. 12, we find that the performance of IPC 2 is improved if we further consider s2 forLskew while that of IPC 1 is degraded.

Float Number Budgets: The focus of this paper is mainly on integral IPC for slimmable DC. Nevertheless, there are
indeed some engineering tricks for float number budgets. For instance, if the budget is 1.4, we can slim to 2 IPC and then
downsample images to 0.84× scale. LBS and LFS performances are 50.60 and 35.38 respectively. Performances of IPC 1
and 2 are shown in Tab. 12 as a reference.

Impact of Significance-Aware Parameterization on Typical DC: We find that the proposed significance-aware param-
eterization for slimmable DC can also impact typical DC like other synthetic dataset parameterization methods [1, 7]. Here,
we try disabling it and provide the results in the “Ours” cols. of Tab. 11 to quantify such impact.

D. More Applications
As supplements to the main manuscript, we provide results of more settings for applications of slimmable DC, i.e.,

continual learning with a fixed synthetic buffer and federated learning with a dynamic number of participants. On CIFAR100,
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Figure 3. Comparisons with the baseline FRePo on applications of slimmable DC: continual learning using a synthetic buffer with a fixed
size, under different buffer sizes and network architectures.
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Figure 4. Comparisons with the baseline FRePo on applications of slimmable DC: federated learning with a dynamic number of participant,
under different transmission bandwidths and network architectures.

we consider three synthetic buffer sizes / transmission bandwidths: 1,000, 500, and 200 images. Synthetic datasets are trained
on CNN with 3 blocks. Beyond the same structure, we also evaluate the performance of synthetic buffers on ResNet-18,
AlexNet, and VGG-11. Full results by FRePo [15] and our method are shown in Figs. 3 and 4, with respective to continual
learning and federated learning. The conclusion is consistent with that in the main paper.
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