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This document contains the following materials as supplements to the main manuscript:
¢ Theoretical derivation of Prop. 1 in the main paper.
* Full quantitative comparisons of the main paper and results on more datasets and settings.
* More experimental analysis of the proposed algorithm.

* Results in more settings of continual learning and federated learning.

A. Theoretical Derivations

We explore a significance-aware parameterization for synthetic datasets in this paper. A synthetic dataset (X, Y;) is
parameterized by (U, X, V,,V,):

¢ V, € R4 and V,, € R®*¢ denote orthogonal bases for constructing samples and labels respectively, where b is the
total number of components;

* ¥ = diag(s1,...,8) with s > --- > sy is a diagonal matrix, where each s; denotes the significance of the i-th
component;

+ U € R"*? is an orthogonal matrix representing coefficients of different components for constructing each data.

The synthetic samples and corresponding labels are constructed by:
X =UXV,, Y,=UXV,. 1

In implementation, samples of each class share the same U and X for memory efficiency. We find that it is possible to simply
discard less important components when we need to slim a synthetic dataset, i.e., deleting the entries with least singular
values in X, the corresponding columns in U, and the corresponding rows in V; and V,, which has the potential to serve as
either a learning-free slimmable DC strategy or a strong initialization for learning-based slimmable DC. Theoretically, in the
case of linear regression, the error on the resultant solution plane satisfies the following proposition:

Proposition 1. In linear regression, if a synthetic dataset (X, Y5~) takes the parameterization in Eq. 1, and rows in'V, and
Vy corresponding to the least singular values in %, denoted as V,, and V,,, are removed for slimmable DC, the first-order
parameter distance between parameters before and after slimming is bounded by:

lwyh — w3 < s3] Xsw — Y53, )
and the infinity-order parameter distance is bounded by:

~ T ~
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Proof. Let 3 and 3 denote diagonal matrices with the largest and the least singular values in X, V, and V denote rows in
Vz and V, corresponding to the largest singular values in 3, V, and V denote rows in V,, and V, corresponding to the least

ones, U denote columns in U corresponding to the largest singular values in 3, and U denote columns in U corresponding to
the least ones. We have X = U UTX‘ and Y] = U UTYS, which can be verified by:
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For Y/, the verification is similar. Then, for the first-order parameter distance,
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where the last inequality holds since the component corresponding to the largest singular value o7 would always be kept and
singular value of deleted components is o> at most.
For the infinity-order parameter distance,
IX2TYY = XY = 11X (X)X (X)) TS
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IPC | 50 20 10 5 2 1

RT | 82.8940.16 84.37+023 83384028  80.540.14  76.0740.31  70.2740.71

DC [14] LBS - 79.604£0.32 75424042  67.924039 61344097  57.35+1.66
Gapl - 477 7.96 12.62 14.73 12.92

LFS - 72.254£0.53 70224036 56394049 54794074  34.8440.82

RT | 88.73+0.08  86.68+£0.16 852740.13 81.994025  76.66£0.24  70.3340.72

Dsa[ly  LBS - 86.084£0.16  83.3240.19  79.17+£030  70.29+£0.65  51.58=1.19
Gapl - 0.60 1.95 2.82 6.37 18.75

LFS - 79.862£0.29  74.14+0.18 71274021  54.63+£0.56  43.81+£1.46

RT | 88204027 86214021 83.84+0.16 80.89+£021  74.424024  71.454+0.49

DM [13] LBS - 85.9240.14 83214027  802140.16  73.78+025  70.69--0.49
Gapl. - 0.29 0.63 0.68 0.64 0.76

LFS - 81.05£0.27  78.56+0.05  68.04+£049 5922053  58.48-+£0.43

RT | 89.06+0.15 86.81+£021 8516035  83.13£0.14  77.9620.16  70.6440.37

IDC [4] LBS - 84.8140.29  83.36+024  81.164£023 76524049  67.73£1.00
Gapl - 2.00 1.80 1.97 1.44 291

LFS - 82.574023  77.0240.28 74414050  60.86£0.88  52.7541.41

RT | 89.1540.13 87.44+£021  85.5420.15 83.80+021 79.91+£0.44  75.4440.45

FRoPo[15] LBS - 86.60+£0.38  81.5340.38  67.74+049 3344179 29244225
Gapl - 0.84 4.01 16.06 46.47 46.20

LFS - 82.5940.17  75.65+034 71764028  61.94£0.75  44.00£1.92

RT | 88.684+0.15 87.50+0.13  86.65:0.08 8354034  79.63+0.82  74.14+0.31

our LBS - 86.810.07 85182021  83.6240.20 78.58:0.71  72.7440.67
urs Gapl. - 0.69 1.47 -0.08 1.05 1.40

LFS - 82964021 76714036 74724045  69.521047  66.43+0.76

Table 1. Comparisons with existing typical DC algorithms on the performance of slimmable DC on FashionMNIST. IPC: number of images
per class. RT: retraining using original datasets. LBS: learning-based slimming. LFS: learning-free slimming.

IPC | 50 20 10 5 2 1

RT 53434028  49.73+0.27  43.741+0.41 39.88+0.50  38.89+0.31 28.201+0.71

DC[14] LBS - 45.59+£0.35  39.83+£0.53  3545+0.58  29.65+£0.46  23.00+0.58
Gapl - 4.14 391 443 9.24 5.20

LFS - 41.82+£0.59  32.66+0.15  25.88+0.36 18.761+0.25 17.37+0.29

RT 60.58+0.29  57.11+£0.22  52.15+0.48 47314026  34.23+0.26  28.10+0.72

DSA [17] LBS - 52.77+£035  46.55+0.64  39.51+0.37  30.07+0.43  20.48+0.17
Gapl - 434 5.60 7.80 4.16 7.62

LFS - 41.54+£043  29.29+0.25  27.56+0.21 20.10+0.32  14.05+0.26

RT 62.94+0.28 55414055  48.80+0.31  42.89+0.28  33.50+0.50  27.08+0.36

DM [13] LBS - 56471042  49.894+0.19  43.57+0.38  34.35+0.74  26.671+0.83
Gapl - -1.06 -1.09 -0.68 -0.85 0.41

LFS - 46.76£0.52  3535+0.75  25.34+0.34 16.051+0.34 13.811+0.45

RT 69.32+0.30  62.01+0.28  58.504+0.39  52.13+0.66  44.12+0.78  35.3410.87

IDC [4] LBS - 58774023 54244035  47.83+0.75  38.61+0.69  29.16+1.41
Gapl - 3.24 4.26 430 551 6.18

LFS - 51.91+£0.49  42.17+0.49  30.20+0.36  22.8440.54 17.68+0.71

RT 71.03+£0.34  68.63+£0.53  65.76+£0.72  61.07+£0.31  53.24+0.37  43.24+0.32

FRePo [15] LBS - 65.64+0.30  53.76+0.92  38.02+1.03 17.31£0.38 11.01£0.38
Gapl - 2.99 12.00 23.05 35.93 32.23

LFS - 59.14+0.73  50.48+0.19  38.34+0.88  29.60+0.60 18.22+0.55

RT 70.33+£0.34  67.60+£0.22  64.57+£0.24  59.49+0.19  52.88+0.73  43.56+0.43

Ours LBS - 67.93+£0.48  63.96+£0.59  61.05+£0.32  5582+0.46  47.77+0.35
Gapl - -0.33 0.61 -1.56 -2.94 -4.21

LFS - 62.05+£0.29  48.89+0.54  40.48+0.34  36.51+£0.16  33.09+0.29

Table 2. Comparisons with existing typical DC algorithms on the performance of slimmable DC on CIFAR10. IPC: number of images per
class. RT: retraining using original datasets. LBS: learning-based slimming. LFS: learning-free slimming.

B. Quantitative Comparisons

Here, we provide full quantitative comparison results with previous methods on 5 widely-adopted benchmarks including
FashionMNIST [11], CIFAR10, CIFAR100 [5], Tiny-ImageNet [6], and ImageNette [3]'. The number of classes is 10, 10,
100, 200, and 10 and the resolution is 28, 32, 32, 64, and 128, respectively. The protocol for comparison maintains the same

For experiments on Tiny-ImageNet and ImageNette, we load the publicly-available pre-trained synthetic datasets of FRePo.



IPC | 20 10 5 2 1

RT | 28934026 25.08+0.17 21.2940.15 1646039  12.4440.18

DC [14] LBS - 21284033  17.074£025  12.63+£021 934022
Gapl - 3.80 422 3.83 3.10

LFS - 21784032 13304028 6744021  4.64-0.05

RT | 36354+0.18 32494030 27.3542042 20474006  13.814£0.21

Dsa[ly LBS - 29894027 24344027  17.614041  11.6240.14
Gapl - 2.60 3.01 2.86 2.19

LFS - 23.6940.34 14924025  8.06+£0.12  4.95+0.12

RT | 34394030 29.33+023 23914023  159840.14  11.5140.25

DM [13] LBS - 30844021 24744034  164740.16  11.6240.40
Gapl - -1.51 -0.83 -0.49 -0.11

LFS - 26724020 15694031  7.954022  5.2240.11

RT | 41994023  36.08+£038  30.68:£0.17 233440.19  17.9340.15

IDC [4] LBS - 35.16£0.27  28.294+0.18  18.39+0.17  13.40£0.31
Gapl - 0.92 2.39 495 4.53

LFS - 302540.16  19.504£0.17  10.9640.14  7.63+0.11

RT | 40574026 39974032 36344021 31.63+£026  27.070.26

FRoPo[l5] LBS - 35534036 32.0840.55  26.51+£036  19.27+0.59
Gapl . 4.44 4.26 5.12 7.80

LFS - 35.1840.32  30.00£0.59 19944028  13.63£0.12

RT | 42474020  40.29+036 36424021 3228+0.14 26754034

our LBS - 362342046 33491055 29274036 26.04--0.38
urs Gapl. - 4.06 2.93 3.01 0.71

LFS - 35394004  28.58+0.18  23.69:£0.31  20.34:-0.26

Table 3. Comparisons with existing typical DC algorithms on the performance of slimmable DC on CIFAR100. IPC: number of images
per class. RT: retraining using original datasets. LBS: learning-based slimming. LFS: learning-free slimming.

IPC 10 5 2 1
FRePo [15] LBS 26.86+0.05  20.0610.18 14.124+0.26 10.2240.17
LFS 26.86+0.05  20.49+029  14.174+0.07 9.82+0.05
Ours LBS 26.80+0.17  21.06+0.05  18.21+0.21  16.211+-0.44
LFS 26.80+0.17  20.74+0.15  15.30+0.14  12.92+0.14

Table 4. Comparisons with the baseline FRePo on the performance of slimmable DC on Tiny-ImageNet. IPC: number of images per class.
LBS: learning-based slimming. LFS: learning-free slimming.

IPC | 10 5 2 1
FRePo [15] LBS 67.23+£0.74  42.651+0.24 19.741+0.22 12.4910.54
LFS 67.23+0.74 55374032  33.591+0.41 21.4440.37
Ours LBS 67.67+£035  60.36+0.64  53.57+0.59  44.88+1.15
‘ LFS 67.67+£035  55.76+1.03  48.97+0.61  39.5410.39

Table 5. Comparisons with the baseline FRePo on the performance of slimmable DC on ImageNette. IPC: number of images per class.
LBS: learning-based slimming. LFS: learning-free slimming.

as that in the main paper: we compress a real dataset to a relatively large synthetic one and then perform successive slimmable
condensations. Results for the 5 datasets are shown in Tabs. 1, 2, 3, 4, and 5, respectively. Results for cross-architecture
performance can be found in Tabs. 6, 7, 8, 9, and 10. All results are based on 5 repeated evaluations and we report the
average results and the standard deviations. The conclusion is consistent with that in the main paper.

Although some works also focus on synthetic dataset parameterization [1,7] to boost the performance of DC, as mentioned
in the related work section of the main paper, the highlight of this paper is on the co-design of parameterization and loss terms,
which makes it suitable for slimmable DC. Since previous works do not take significance of various components into account,
their LFS performances are unsatisfactory as shown in the 3rd, 4th, and 10th cols. of Tab. 11.

The main analysis of this paper is on the state-of-the-art methods, which are based on kernel ridge regression (KRR) [8—

, 15]. In Tab.1 of the main paper, we also present some insights on a wider spectrum of methods including those based
on gradient-matching and distribution matching. Here, we further provide experimental results for methods based on back-
propagation-through-time (BPTT) and matching-training-trajectory (MTT) in Tab. 11. For BPTT, the difference with KRR



IPC | 20 10 5 2 1

ResNet  FREPO | 8400071 76784078 59014242 37.26+334 31444256
Ours | 85412029 82.60+1.06 78.07+1.74  71.21+0.61  56.93:0.43

AlexNet  FRePO | 84204017 78604016 58734239 34474387 37534187
exive Ours | 85.64+0.09 82.3240.03  78.60+0.56  70.53+0.84  52.59+2.25

vGg ~ FRePo | 79.60+063 7148048 51994134 3080121  28.3742.02
Ours | 80.86+0.39 76964042 7319077 57.61+348  39.15+1.96

Table 6. Comparisons with the baseline FRePo on cross-architecture performance of slimmable DC on FashionMNIST. IPC: number of
images per class. LBS: learning-based slimming. LFS: learning-free slimming.

IPC | 20 10 5 2 1
ResNet ~ FRePo | 53224174 39344157 23974100  14.094067  11.6040.28
s Ours | 56.24+1.05 49.414+0.89  43.73+2.63  32.74+1.19  25.56+1.02
AlexNet  FRePo | 59.65+£021 4403093  29.24:+£039  14.85+122  11.76£0.36
Ours | 63914029  57.33+0.34  53.74+£1.30  4527+1.10  36.27+0.63
vgg ~ FRePo | 50724083 34791140  23.11+105  12.93+127  10.69+0.89
Ours | 54784170  43.78+0.39  37.43+£1.35 32314154  28.02+0.89

Table 7. Comparisons with the baseline FRePo on cross-architecture performance of slimmable DC on CIFAR10. IPC: number of images
per class. LBS: learning-based slimming. LFS: learning-free slimming.

IPC ‘ 10 5 2 1
ResNet | FREPO | 2614149 18824082  13.694068  8.63+0.14
esne Ours | 26.754+0.99  20.60+£1.17  16.92:-048  12.431+0.22
AlexNer  FRePO | 337540090 26974022 19.58+0.11  11.68+0.25
Ours | 34.8514020 29.07+025 24.56:0.35  17.274+0.23
vgg ~ FRePo | 28883041 21664063  1269+0.16  6.62+023
Ours | 29.65+048 24234041 1830010  13.90+0.42

Table 8. Comparisons with the baseline FRePo on cross-architecture performance of slimmable DC on CIFAR100. IPC: number of images
per class. LBS: learning-based slimming. LFS: learning-free slimming.

IPC | 5 2 1
ResNet | FREPo | 10014078 5914058 473048
Ours | 10.66:0.58  8.584+0.72  7.1540.86
AlexNet  FRePo | 1546028 10804035 7.5040.26
exive Ours | 17.75+0.28  14.83+0.34  12.76+0.53
vgg ~ FRePo | 15014026  9.2240.13 5944027
Ours | 17.642036 15244039  13.49-0.29

Table 9. Comparisons with the baseline FRePo on cross-architecture performance of slimmable DC on Tiny-ImageNet. IPC: number of
images per class. LBS: learning-based slimming. LFS: learning-free slimming.

IPC | 5 2 1
ResNet  FRePo | 3397241 1672£123 13584051
‘ Ours | 42294126  37.37+2.97 28.45+1.86
AlexNet  FREPO | 40.59+124  17.82£137  12.37+1.09
Ours | 53.55+0.38  48.56+1.42  40.43+1.25
vGg ~ FRePo | 34114196  17.5742.98  11.93+041
Ours | 50.13+3.61 4571+195  35.64:£0.51

Table 10. Comparisons with the baseline FRePo on cross-architecture performance of slimmable DC on ImageNette. IPC: number of
images per class. LBS: learning-based slimming. LFS: learning-free slimming.

is that the model becomes non-linear. Linear models as analyzed in the paper suffer from the problem of underdetermined
solution space. Based on results in the Sth and 6th cols. of Tab. 11, the non-linearity does not get rid of this issue. For MTT,



Deng et al. [1] Liuetal. [7] BPTT MTT Ours

PC ) RS LFS | LFS | RT LBS | RT LBS | RT  LFS LBSw/oParam. LBS

10 (Original) | 31.60 7120 69.90 6394 - | 6410 - | 6457 - - -
10— 5 24.82 39.44 34.98 5050 5323 | 57.92 3629 | 5949  42.90 58.51 60.96
51 16.68 2736 18.83 4871 3414 | 4569 18.83 | 4356  33.87 4321 46.82

Table 11. More comparisons with existing methods and more ablation studies in the setting of slimmable DC on CIFAR10. IPC: number
of images per class. LBS: learning-based slimming. LFS: learning-free slimming. RS: randomly selected real images.
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Figure 2. Distribution of top 25 significance scores for 50 IPC of CIFAR10. Table 12. Impact of including more terms to Lsxeqw-

matching gradients for only a limited number of steps may suffer from the error accumulation problem: alignment error can
be amplified over successive condensation [2]. It turns out that the one-step and infinity-step matching proposed in this paper
can suppress the issue most effectively. Although, as mentioned in the main paper, generating hundreds of teacher training
trajectories is inefficient in both time and memory for slimmable DC, we still provide the results in the 7th and 8th cols. of
Tab. 11 regardless of efficiency. The large gap reflects significant error accumulation problem.

C. More Analysis

Sensitivity Analysis of Hyper-Parameters: We provide sensitivity analysis of hyper-parameters on CIFAR10: )\}m,

Askew, and Aorino in Fig. 1(a). We observe that the performance is relatively not sensitive to their values when they are set
small. Too large weights may decrease the power of infinity-order parameter matching £77, and impair the final performance.
We also conduct joint analysis for these hyper-parameters in Fig. 1(b), for 20 IPC. The results are insensitive to their values
(1.2% gap in maximal) and all closed to RT (67.6%).

Studies on Significance Scores: We provide a visualization of the distribution of top 25 significance scores for 50 IPC of
CIFARI10 in Fig. 2 and there is a long-tailed effect. Moreover, if we know the minimal IPC, we can add the corresponding
number of components to Lk, instead of merely including sq; if not, we only regulate s; by default. In experiments of
Tab. 12, we find that the performance of IPC 2 is improved if we further consider s5 forL sxe,, While that of IPC 1 is degraded.

Float Number Budgets: The focus of this paper is mainly on integral IPC for slimmable DC. Nevertheless, there are
indeed some engineering tricks for float number budgets. For instance, if the budget is 1.4, we can slim to 2 IPC and then
downsample images to 0.84x scale. LBS and LFS performances are 50.60 and 35.38 respectively. Performances of IPC 1
and 2 are shown in Tab. 12 as a reference.

Impact of Significance-Aware Parameterization on Typical DC: We find that the proposed significance-aware param-
eterization for slimmable DC can also impact typical DC like other synthetic dataset parameterization methods [1,7]. Here,
we try disabling it and provide the results in the “Ours” cols. of Tab. 11 to quantify such impact.

D. More Applications

As supplements to the main manuscript, we provide results of more settings for applications of slimmable DC, i.e.,
continual learning with a fixed synthetic buffer and federated learning with a dynamic number of participants. On CIFAR100,
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Figure 3. Comparisons with the baseline FRePo on applications of slimmable DC: continual learning using a synthetic buffer with a fixed
size, under different buffer sizes and network architectures.
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Figure 4. Comparisons with the baseline FRePo on applications of slimmable DC: federated learning with a dynamic number of participant,
under different transmission bandwidths and network architectures.

we consider three synthetic buffer sizes / transmission bandwidths: 1,000, 500, and 200 images. Synthetic datasets are trained
on CNN with 3 blocks. Beyond the same structure, we also evaluate the performance of synthetic buffers on ResNet-18,
AlexNet, and VGG-11. Full results by FRePo [15] and our method are shown in Figs. 3 and 4, with respective to continual
learning and federated learning. The conclusion is consistent with that in the main paper.
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