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Abstract

Modern neural networks are over-parameterized and
thus rely on strong regularization such as data augmenta-
tion and weight decay to reduce overfitting and improve
generalization. The dominant form of data augmentation
applies invariant transforms, where the learning target of a
sample is invariant to the transform applied to that sam-
ple. We draw inspiration from human visual classifica-
tion studies and propose generalizing augmentation with
invariant transforms to soft augmentation where the learn-
ing target softens non-linearly as a function of the de-
gree of the transform applied to the sample: e.g., more ag-
gressive image crop augmentations produce less confident
learning targets. We demonstrate that soft targets allow
for more aggressive data augmentation, offer more robust
performance boosts, work with other augmentation poli-
cies, and interestingly, produce better calibrated models
(since they are trained to be less confident on aggressively
cropped/occluded examples). Combined with existing ag-
gressive augmentation strategies, soft targets 1) double the
top-1 accuracy boost across Cifar-10, Cifar-100, ImageNet-
1K, and ImageNet-V2, 2) improve model occlusion perfor-
mance by up to 4×, and 3) half the expected calibration
error (ECE). Finally, we show that soft augmentation gen-
eralizes to self-supervised classification tasks. Code avail-
able at https://github.com/youngleox/soft_
augmentation

1. Introduction
Deep neural networks have enjoyed great success in the

past decade in domains such as visual understanding [42],
natural language processing [5], and protein structure pre-
diction [41]. However, modern deep learning models are
often over-parameterized and prone to overfitting. In addi-
tion to designing models with better inductive biases, strong
regularization techniques such as weight decay and data
augmentation are often necessary for neural networks to
achieve ideal performance. Data augmentation is often a
computationally cheap and effective way to regularize mod-

els and mitigate overfitting. The dominant form of data aug-
mentation modifies training samples with invariant trans-
forms – transformations of the data where it is assumed that
the identity of the sample is invariant to the transforms.

Indeed, the notion of visual invariance is supported by
evidence found from biological visual systems [54]. The
robustness of human visual recognition has long been docu-
mented and inspired many learning methods including data
augmentation and architectural improvement [19, 47]. This
paper focuses on the counterpart of human visual robust-
ness, namely how our vision fails. Instead of maintaining
perfect invariance, human visual confidence degrades non-
linearly as a function of the degree of transforms such as
occlusion, likely as a result of information loss [44]. We
propose modeling the transform-induced information loss
for learned image classifiers and summarize the contribu-
tions as follows:

• We propose Soft Augmentation as a generalization of data
augmentation with invariant transforms. With Soft Aug-
mentation, the learning target of a transformed training
sample softens. We empirically compare several soften-
ing strategies and prescribe a robust non-linear softening
formula.

• With a frozen softening strategy, we show that replac-
ing standard crop augmentation with soft crop augmenta-
tion allows for more aggressive augmentation, and dou-
bles the top-1 accuracy boost of RandAugment [8] across
Cifar-10, Cifar-100, ImageNet-1K, and ImageNet-V2.

• Soft Augmentation improves model occlusion robustness
by achieving up to more than 4× Top-1 accuracy boost
on heavily occluded images.

• Combined with TrivialAugment [37], Soft Augmentation
further reduces top-1 error and improves model calibra-
tion by reducing expected calibration error by more than
half, outperforming 5-ensemble methods [25].

• In addition to supervised image classification models,
Soft Augmentation also boosts the performance of self-
supervised models, demonstrating its generalizability.

https://github.com/youngleox/soft_augmentation
https://github.com/youngleox/soft_augmentation
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Figure 1. Traditional augmentation encourages invariance by requiring augmented samples to produce the same target label; we visualize
the translational offset range (tx, ty) of Standard Hard Crop augmentations for 32 × 32 images from Cifar-100 on the left, reporting
the top-1 error of a baseline ResNet-18. Naively increasing the augmentation range without reducing target confidence increases error
(middle), but softening the target label by reducing the target confidence for extreme augmentations reduces the error (right), allowing
for training with even more aggressive augmentations that may even produce blank images. Our work also shows that soft augmentations
produce models that are more robust to occlusions (since they encounter larger occlusions during training) and models that are better
calibrated (since they are trained to be less-confident on such occluded examples).

2. Related Work

2.1. Neural Networks for Vision

Since the seminal work from Krizhevsky et al. [24], neu-
ral networks have been the dominant class of high per-
forming visual classifiers. Convolutional Neural Networks
(CNNs) are a popular family of high performing neural
models which borrows a simple idea of spatially local com-
putations from biological vision [12, 18, 26]. With the help
of architectural improvements [15], auxiliary loss [42], and
improved computational power [13], deeper, larger, and
more efficient neural nets have been developed in the past
decade.

2.2. Data Augmentation

Data augmentation has been an essential regularizer for
high performing neural networks in many domains includ-
ing visual recognition. While many other regularization
techniques such as weight decay [32] and batch normal-
ization [4] are shown to be optional, we are aware of no
competitive vision models that omit data augmentation.

Accompanying the influential AlexNet model,
Krizhevsky et al. [24] proposed horizontal flipping
and random cropping transforms which became the back-
bone of image data augmentation. Since the repertoire of
invariant transformations has grown significantly in the
past decade [42], choosing which subset to use and then
finding the optimal hyperparameters for each transform
has become computationally burdensome. This sparked a
line of research [7, 28] which investigates optimal policies

for data augmentation such as RandAugment [8] and
TrivialAugment [37].

2.3. Learning from Soft Targets

While minimizing the cross entropy loss between model
logits and hard one-hot targets remains the go-to recipe for
supervised classification training, learning with soft targets
has emerged in many lines of research. Label Smooth-
ing [36, 43] is a straightforward method which applies a
fixed smoothing (softening) factor α to the hard one-hot
classification target. The motivation is that label smoothing
prevents the model from becoming over-confident. Müller
et al. [36] shows that label smoothing is related to knowl-
edge distillation [17], where a student model learns the soft
distribution of a (typically) larger teacher model.

A related line of research [49,53] focuses on regularizing
how a model interpolates between samples by linearly mix-
ing two or more samples and linearly softening the result-
ing learning targets. Mixing can be in the form of per-pixel
blending [53] or patch-level recombination [49].

2.4. Robustness of Human Vision

Human visual classification is known to be robust against
perturbations such as occlusion. In computer vision re-
search, the robustness of human vision is often regarded
as the gold standard for designing computer vision mod-
els [34, 54]. These findings indeed inspire development of
robust vision models, such as compositional, recurrent, and
occlusion aware models [22,46,47]. In addition to specialty
models, much of the idea of using invariant transforms to



augment training samples come from the intuition and ob-
servation that human vision are robust against these trans-
forms such as object translation, scaling, occlusion, photo-
metric distortions, etc.

Recent studies such as Tang et al. [44] indeed confirm
the robustness of human visual recognition against mild
to moderate perturbations. In a 5-class visual classifica-
tion task, human subjects maintain high accuracy when up
to approximately half of an object is occluded. However,
the more interesting observation is that human performance
starts to degenerate rapidly as occlusion increases and falls
to chance level when the object is fully occluded (see Figure
2 right k = 2, 3, 4 for qualitative curves).

3. Soft Augmentation

In a typical supervised image classification setting, each
training image xi has a ground truth learning target yi asso-
ciated to it thus forming tuples:

(xi, yi), (1)

where xi ∈ RC×W×H denotes the image and yi ∈ [0, 1]N

denotes a N -dimensional one-hot vector representing the
target label (Figure 2 left, “Hard Target”). As modern
neural models have the capacity to memorize even large
datasets [1], data augmentation mitigates the issue by hal-
lucinating data points through transformations of existing
training samples.

(Hard) data augmentation relies on the key underlying
assumption that the augmented variant of xi should main-
tain the original target label yi:

(xi, yi) ⇒ (tϕ∼S(xi), yi) , Hard Augmentation (2)

where tϕ∼S(xi) denotes the image transform applied to
sample xi, ϕ is a random sample from the fixed transform
range S. Examples of image transforms include transla-
tion, rotation, crop, noise injection, etc. As shown by Tang
et al. [44], transforms of xi such as occlusion are approxi-
mately perceptually invariant only when ϕ is mild. Hence S
often has to be carefully tuned in practice, since naively in-
creasing it can lead to degraded performance (Figure 1). In
the extreme case of 100% occlusion, total information loss
occurs, making it detrimental for learning.

Label Smoothing applies a smoothing function g to
the target label yi parameterized by a handcrafted, fixed
smoothing factor α. Specifically, label smoothing replaces
the indicator value ‘1’ (for the ground-truth class label) with
p = 1 − α, distributing the remaining α probability mass
across all other class labels (Figure 2 left, “Soft Target”).
One can interpret label smoothing as accounting for the
average loss of information resulting from averaging over
transforms from the range S. From this perspective, the

smoothing factor α can be written as a function of the fixed
transform range S:

(xi, yi) ⇒
(
tϕ∼S(xi), gα(S)(yi)

)
,Label Smoothing (3)

Soft Augmentation, our proposed approach, can now be
described succinctly as follows: replace the fixed smoothing
factor α(S) with an adaptive smoothing factor α(ϕ), that
depends on the degree of the specific sampled augmentation
ϕ applied to xi:

(xi, yi) ⇒
(
tϕ∼S(xi), gα(ϕ)(yi)

)
,

Soft Augmentation (Target) (4)

Crucially, conditioning on the information loss from a par-
ticular ϕ allows one to define far larger augmentation
ranges S. We will show that such a strategy consistently
produces robust performance improvements with little tun-
ing across a variety of datasets, models, and augmentation
strategies.

Extensions to Soft Augmentation may be proposed by
also considering loss reweighting [40, 48], which is an al-
ternative approach for softening the impact of an augmented
example by down-weighting its contribution to the loss. To
formalize this, let us write the training samples of a super-
vised dataset as triples including a weight factor wi (that is
typically initialized to all ‘1’s). One can then re-purpose our
smoothing function g to modify the weight instead of (or in
addition to) the target label (Figure 2 left):

(xi, yi, wi) ⇒
(
tϕ∼S(xi), yi, gα(ϕ)(wi)

)
,

Soft Augmentation (Weight) (5)

(xi, yi, wi) ⇒
(
tϕ∼S(xi), gα(ϕ)(yi), gα(ϕ)(wi)

)
.

Soft Augmentation (Target & Weight) (6)

Finally, one may wish to soften targets by exploiting class-
specific confusions when applying α(ϕ); the smoothed tar-
get label of a highly-occluded truck example could place
more probability mass on other vehicle classes, as opposed
to distributing the remaining probability equally across all
other classes. Such extensions are discussed in Section 5.

4. Experiments
4.1. Soft Augmentation with Crop

As a concrete example of the proposed Soft Augmenta-
tion, we consider the crop transform t(tx,ty,w,h)(x). In the
case of 32×32 pixel Cifar images [23], the cropped images
typically have a constant size w = h = 32, and t(x) is fully
parameterized by tx and ty, which are translational offsets
between the cropped and the original image. As shown in
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Figure 2. Variants of Soft Augmentation as prescribed by Equations 4 (Soft Target), 5 (Soft Weight), 6 (Soft Target & Weight) with example
target confidence p = 0.6 (left). Soft Augmentation applies non-linear (k = 2, 3, 4, ...) softening to learning targets based on the specific
degree of occlusion of a cropped image (Equation 7), which qualitatively captures the degradation of human visual recognition under
occlusion [44]. Label Smoothing applies a fixed softening factor α to the one-hot classification target.

Figure 1 (left), the standard hard crop augmentation for the
Cifar-10/100 classification tasks draws tx, ty independently
from a uniform distribution of a modest range U(−4, 4).
Under this distribution, the minimal visibility of an image
is 77% and ResNet-18 models trained on the Cifar-100 task
achieve mean top-1 validation error of 20.80% across three
independent runs (Figure 1 left). Naively applying aggres-
sive hard crop augmentation drawn from a more aggressive
range U(−16, 16) increases top-1 error by 2.19% (Figure 1
middle). We make two changes to the standard crop aug-
mentation.

We first propose drawing tx, ty independently from a
scaled normal distribution S∗ ∼ N(0, σL) (with clipping
such that |tx| < L, |ty| < L), where L is the length of the
longer edge of the image (L = 32 for Cifar). The distri-
bution has zero mean and σ controls the relative spread of
the distribution hence the mean occlusion level. Following
the 3σ rule of normal distribution, an intuitive tuning-free
choice is to set σ ≈ 0.3, where ∼ 99% of cropped samples

have visibility ≥ 0. Figure 3 (left, α = 0) shows that chang-
ing the distribution alone without target softening provides
a moderate ∼ 0.4% performance boost across crop strength
σ.

Directly borrowing the findings from human vision re-
seach [44], one can define an adaptive softening α(tx, ty, k)
that softens the ground truth learning target. Similar to La-
bel Smoothing [43], a hard target can be softened to confi-
dence p ∈ [0, 1]. Instead of a fixed α, consider a family of
power functions that produces target hardness p given crop
parameters tx, ty and curve shape k:

p = 1−α(tx, ty, k) = 1− (1− pmin)(1− v(tx,ty))
k, (7)

where v(tx,ty) ∈ [0, 1] is the image visibility which is a
function of tx and ty. The power function family is a simple
one-parameter formulation that allows us to test both linear
(k = 1) and non-linear (k ̸= 1) softening: higher k provides
flatter plateaus in high visibility regime (see Figure 2 right).
As seen in Label Smoothing, p can be interpreted as ground
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Figure 3. Soft Augmentation reduces the top-1 validation error of ResNet-18 on Cifar-100 by up to 2.5% via combining both target and
weight softening (Equation 6). Applying target softening alone (Equation 4) can boost performance by ∼ 2%. Crop parameters tx, ty
are independently drawn from N(0, σL) (L = 32). Higher error reductions indicate better performance over baseline. All results are the
means and standard errors across 3 independent runs.



truth class probability of the one-hot learning target. pmin

is the chance probability depending on the task prior. For
example, for Cifar-100, pmin = 1

#classes = 0.01.
Equation 7 has three assumptions: 1) the information

loss is a function of image visibility and all information is
lost only when the image is fully occluded, 2) the original
label of a training image has a confidence of 100%, which
suggests that there is no uncertainty in the class of the label,
and 3) the information loss of all images can be approx-
imated by a single confidence-visibility curve. While the
first assumption is supported by observations of human vi-
sual classification research [44], and empirical evidence in
Sections 4.2 and 4.3 suggests that the second and the third
assumptions approximately hold, the limitations to these as-
sumptions will be discussed in Section 5.

4.2. How to Soften Targets

As prescribed by Equations 4, 5, and 6, three versions
of Soft Augmentation are compared with Label Smoothing
across a range of crop strength σ. The popular ResNet-18
models [16] are trained on the 100-class classification Cifar-
100 training set. Top-1 error reductions on the validation
set are reported (details in Appendix B). Consistent with
prior studies, label smoothing can boost model performance
by ∼ 1.3% when the smoothing factor α is properly tuned
(Figure 3 left).

Combining both target and weight softening (Equation
6) with k = 2 and σ ≈ 0.3 boosts model performance by
2.5% (Figure 3 right). Note that k = 2 qualitatively re-
sembles the shape of the curve of human visual confidence
degradation under occlusion reported by Tang et al. [44].
Interestingly, the optimal σ ≈ 0.3 fits the intuitive 3-σ rule.
In the next section we freeze k = 2 and σ = 0.3 and
show robust improvements that generalize to Cifar-10 [23],
ImageNet-1K [9], and ImageNet-V2 tasks [39].

4.3. Supervised Classification

4.3.1 Comparison with Related Methods

As mentioned in Section 2, many approaches similar to
soft augmentation have demonstrated empirical perfor-
mance gains, including additional data augmentation trans-
forms [10], learning augmentation policies [8], softening
learning targets [43], and modifying loss functions [29].
However, as training recipes continued to evolve over the
past decade, baseline model performance has improved ac-
cordingly. As seen in Table 1 (Baseline), our baseline
ResNet-18 models with a 500-epoch schedule and cosine
learning rate decay [33] not only outperform many recent
baseline models of the same architecture, but also beat var-
ious published results of Mixup and Cutout. To ensure
fair comparisons, we reproduce 6 popular methods: Mixup,
Cutout, Label Smoothing, Online Label Smoothing, Focal

Table 1. Soft augmentation outperforms related methods. Optimal
hyperparameters for Mixup [53], Cutout [10], and Online Label
Smoothing [52] were applied. α of Focal Loss is tuned as [29] did
not prescribe an optimal α for Cifar classification. It is worth not-
ing that our baseline model (20.80%) not only outperforms other
published baseline models by 1.5% to 4.8%, but also beat various
implementations of Mixup and Cutout. Top-1 errors of ResNet-18
on Cifar-100 are reported.

ResNet-18 Top-1 Error

Baseline

Zhang et al. [53] 25.6
DeVries and Taylor [10] 22.46±0.31

Kim et al. [20] 23.59
Ours 20.80±0.11

Mixup
Zhang et al. [53] 21.1
Kim et al. [20] 22.43

Ours 19.88±0.38

Cutout DeVries and Taylor [10] 21.96±0.24

Ours 20.51±0.02

Label Smoothing

Ours

19.47±0.18

Online Label Smoothing 20.12±0.05

Focal Loss (α = 1) 20.45±0.08

Focal Loss (α = 2) 20.38±0.08

Focal Loss (α = 5) 20.69±0.17

RandAugment 20.99±0.11

Soft Augmentation 18.31±0.17

Loss, and RandAugment, and report the Top-1 Error on
Cifar-100 in Table 1. Additional comparisons with the self-
reported results are available in Appendix Table 5.

Table 1 shows that Soft Augmentation outperforms all
other single methods. It is worth noting that although focal
loss [29] proposed for detection tasks, it can be tuned to
slightly improve classification model performance.

4.3.2 Soft Augmentation Compliments RandAugment

This section investigates the robustness of Soft Augmen-
tation across models and tasks, and how well it compares
or complements more sophisticated augmentation policies
such as RandAugment [8]. The ImageNet-1K dataset [9]
has larger and variable-sized images compared to the Ci-
far [23] datasets. In contrast with the fixed-sized crop
augmentation for Cifar, a crop-and-resize augmentation
t(tx,ty,w,h)(x) with random location tx, ty and random size
w, h is standard for ImageNet training recipes [7,8,42]. The
resizing step is necessary to produce fixed-sized training
images (e.g. 224 × 224). We follow the same σ = 0.3
principle for drawing tx, ty and w, h (details in Appendix
B).

Comparing single methods, Soft Augmentation with
crop only consistently outperforms the more sophisticated
RandAugment with 14 transforms (Table 2). The small
ResNet-18 models trained with SA on Cifar-10/100 even
outperforms much larger baseline ResNet-50 [39] and
WideResNet-28 [50] models.



Table 2. Soft Augmentation (SA) with a fixed softening curve of k = 2 doubles the top-1 error reduction of RandAugment (RA) across
datasets and models. Note that the ResNet-18 models trained with SA on Cifar-10/100 even outperform larger baseline ResNet-50 and
WideResNet-28 models. All results are mean ± standard error of top-1 validation error in percentage. Best results are shown in bold,
runners-up are underlined, and results in parentheses indicate improvement over baseline. Statistics are computed from three runs.

Dataset Model Baseline SA RA SA+RA

Cifar100

EfficientNet-B0 49.70±1.55 42.13±0.45(−7.57) 46.68±1.52(−3.02) 38.72±0.71(−10.98)

ResNet-18 20.80±0.11 18.31±0.17(−2.49) 20.99±0.11(+0.19) 18.10±0.20(−2.70)

ResNet-50 20.18±0.30 18.06±0.24(−2.12) 18.57±0.09(−1.61) 16.72±0.06(−3.46)

WideResNet-28 18.60±0.19 16.47±0.18(−2.13) 17.65±0.14(−0.95) 15.37±0.17(−3.23)

PyramidNet + ShakeDrop 15.77±0.17 14.03±0.05(−1.75) 14.02±0.28(−1.76) 12.78±0.16(−2.99)

Cifar10

EfficientNet-B0 17.73±0.69 12.21±0.22(−5.52) 14.54±0.47(−3.19) 11.67±0.26(−6.06)

ResNet-18 4.38±0.05 3.51±0.08(−0.87) 3.89±0.06(−0.49) 3.27±0.08(−1.11)

ResNet-50 4.34±0.14 3.67±0.08(−0.67) 3.91±0.14(−0.43) 3.01±0.02(−1.33)

WideResNet-28 3.67±0.08 2.85±0.02(−0.82) 3.26±0.04(−0.41) 2.45±0.03(−1.20)

PyramidNet + ShakeDrop 2.86±0.03 2.26±0.02(−0.60) 2.32±0.08(−0.54) 2.02±0.01(−0.84)

ImageNet-1K ResNet-50 22.62±<0.01 21.66±0.02(−0.96) 22.02±0.02(−0.60) 21.27±0.05(−1.35)

ResNet-101 20.91±0.04 20.63±0.03(−0.28) 20.39±0.07(−0.52) 19.86±0.03(−1.05)

ImageNet-V2 ResNet-50 34.97±0.03 33.32±0.10(−1.65) 34.16±0.21(−0.81) 32.38±0.16(−2.59)

ResNet-101 32.68±0.04 31.81±0.16(−0.87) 32.08±0.19(−0.60) 31.26±0.12(−1.42)

Because RandAugment is a searched policy that is orig-
inally prescribed to be applied in addition to the standard
crop augmentation [8], one can easily replace the standard
crop with soft crop and combine Soft Augmentation and
RandAugment. As shown in Table 2, Soft Augmentation
complements RandAugment by doubling its top-1 error re-
duction across tasks and models.

Note that for the small ResNet-18 model trained on
Cifar-100, the fixed RandAugment method slightly de-
grades its performance. Consistent with observations from
Cubuk et al. [8], the optimal hyperparameters for RandAug-
ment depend on the combination of model capacity and task
complexity. Despite the loss of performance of applying
RandAugment alone, adding Soft Augmentation reverses
the effect and boosts performance by 2.7%.

For the preceding experiments, a fixed k = 2 is used for
Soft Augmentation and the official PyTorch RandomAug-
ment [38] is implemented to ensure a fair comparison and to
evaluate robustness. It is possible to fine-tune the hyperpa-
rameters for each model and task to achieve better empirical
performance.

4.3.3 Occlusion Robustness

As discussed in Section 2, occlusion robustness in both hu-
man vision [34,44,54] and computer vision [22,46,47] have
been an important property for real world applications of vi-
sion models as objects. To assess the effect of soft augmen-
tation on occlusion robustness of computer vision models,
ResNet-50 models are tested with occluded ImageNet vali-
dation images (Figure 4 and Appendix Figure 7). 224×224
validation images of ImageNet are occluded with randomly
placed square patches that cover λ of the image area. λ is

set to {0%, 20%, 40%, 60%, 80%} to create a range of oc-
clusion levels.

As shown in Figure 5, both RandAugment (RA) and Soft
Augmentation (SA) improve occlusion robustness indepen-
dently across occlusion levels. Combining RA with SA re-
duces Top-1 error by up to 17%. At 80% occlusion level,
SA+RA achieves more than 4× accuracy improvement
over the baseline (18.98% vs 3.42%).

4.3.4 Confidence Calibration

In addition to top-1 errors, reliability is yet another impor-
tant aspect of model performance. It measures how close
a model’s predicted probability (confidence) tracks the true
correctness likelihood (accuracy). Expected Calibration Er-
ror (ECE) is a popular metric [14, 25, 35] to measure con-
fidence calibration by dividing model predictions into M
confidence bins (Bm) and compute a weighted average er-
ror between accuracy and confidence:

ECE =

M∑
m=1

|Bm|
n

|acc(Bm)− conf(Bm)|, (8)

where n is the number of samples, acc(Bm) denotes the
accuracy of bin m, and conf(Bm) denotes mean model
confidence of bin m. Consistent with Guo et al. [14], we
set M = 10 and compute ECE for Cifar-10 and Cifar-100
tasks.

As shown in Table 3, many methods [25,30,35,45] have
been proposed to improve confidence calibration, some-
times at the cost of drastically increased computational
overhead [25], or degraded raw performance [30]. We show
in Table 3 (and Appendix Table 7) that it is possible to fur-
ther reduce model top-1 error and expected calibration error
simultaneously.
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Figure 4. Examples of occluded ImageNet validation images and model predictions of ResNet-50. 224 × 224 validation images of
ImageNet are occluded with randomly placed square patches that cover λ of the image area. λ is set to {0%, 20%, 40%, 60%, 80%} to
create a range of occlusion levels.
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Figure 5. Soft Augmentation improves occlusion robustness of
ResNet-50 on ImageNet. Both RandAugment (RA) and Soft
Augmentation (SA) improve occlusion robustness independently.
Combining RA with SA reduces Top-1 error by up to 17%. At
80% occlusion level, compared with baseline accuracy (3.42%),
SA+RA achieves more than 4× accuracy (18.98%).

Compared to previous single-model methods, our strong
baseline WideResNet-28 models achieves lower top-1 er-
ror at the cost of higher ECE. Combining Soft Augmen-
tation with more recently developed augmentation policies
such as TrivialAugment [37] (SA+TA) reduces top-1 error
by 4.36% and reduces ECE by more than half on Cifar-100,
outperforming the 4× more computationally expensive 5-
ensemble model [25]. To the best of our knowledge, this
is state of the art ECE performance for WideResNet-28 on
Cifar without post-hoc calibration.

4.4. Soft Augmentation Boosts Self-Supervised
Learning

In contrast with supervised classification tasks where
the learning target yi is usually a one-hot vector, many
self-supervised methods such as SimSiam [6] and Barlow
Twins [51] learn visual feature representations without class
labels by encouraging augmentation invariant feature rep-
resentations. This section investigates whether Soft Aug-

Table 3. Soft Augmentation improves both accuracy and calibra-
tion. We report mean and standard error of three WideResNet-28
runs per configuration (bottom two rows). On the more challeng-
ing Cifar-100 benchmark, our Baseline already outperforms much
of prior work in terms of Top-1 error, but has worse calibration er-
ror (ECE). Applying Soft Augment + Trivial Augment (SA+TA)
reduces Top-1 error by 4.36% and reduces ECE by more than
half, outperforming even compute-heavy models such as the 5-
Ensemble [25]. Similar trends hold for Cifar-10.

Method Cifar-100 Cifar-10

Top-1 Error ECE Top-1 Error ECE
Energy-based [31] 19.74 4.62 4.02 0.85

DUQ [45] – – 5.40 1.55
SNGP [30] 20.00 4.33 3.96 1.80
DDU [35] 19.02 4.10 4.03 0.85

5-Ensemble [25] 17.21 3.32 3.41 0.76

Our Baseline 18.60±0.16 4.86±0.10 3.67±0.07 2.22±0.03

SA+TA 14.24±0.11 1.76±0.15 2.23±0.06 0.61±0.10

mentation generalizes to learning settings where no one-hot
style labeling is provided.

In a typical setting, two random crops of the same image
are fed into a pair of identical twin networks (e.g., ResNet-
18) with shared weights and architecture. The learning tar-
get can be the maximization of similarity between the fea-
ture representations of the two crops [6], or minimization
of redundancy [51]. By default, all randomly cropped pairs
have equal weights. We propose and test two alternative
hypotheses for weight softening with SimSiam. To accom-
modate self-supervised learning, Equation 7 is modified by
replacing visibility vtx,ty with intersection over union IoU
of two crops of an image:

p = 1−α(ϕ1, ϕ2, k) = 1− (1− pmin)(1− IoUϕ1,ϕ2
)k,

SA#1 (9)

where ϕ1 = (tx1, ty1, w1, h1) and ϕ2 = (tx2, ty2, w2, h2)
are crop parameters for the first and second sample in a pair.



Table 4. Soft Augmentation (SA#1) improves self supervised
learning with SimSiam (ResNet-18) on Cifar-100 by down-
weighting sample pairs with small intersection over union (IoU),
outperforming the opposite hypothesis (SA#2) of down-weighting
pairs with large IoU. For each configuration, we report means and
standard errors of 3 runs with best learning rates (LR) found for
Cifar-100. The effect of SA#1 (with a fixed k = 4) generalizes to
Cifar-10 without re-tuning.

Task LR Baseline LR SA#1 LR SA#2

Cifar100 0.2 37.64±0.06 0.2 36.61±0.05 0.1 37.39±0.06

Cifar10 0.2 9.87±0.03 0.2 9.31±0.01 - -

p is used to soften weights only as no one-hot classification
vector is available in this learning setting. With this hypoth-
esis (SA#1), “hard" sample pairs with low IoUs are assigned
low weights. Alternatively, one can assign lower weights to
“easy" sample pairs with higher IoUs (SA#2), as prescribed
by Equation 10:

p = 1− α(ϕ1, ϕ2, k) = 1− (1− pmin)(IoUϕ1,ϕ2)
k.

SA#2 (10)

We first test all three hypotheses (baseline, SA#1, and
SA#2) on Cifar-100 with the SimSiam-ResNet-18 models.
Table 4 (top) shows that SA#1 outperform both baseline and
SA#2 (details in Appendix B.4). Additional experiments
show that models trained with the same SA#1 configuration
also generalize to Cifar-10 (Table 4 bottom).

5. Discussion
Other augmentations. While we focus on crop aug-

mentations as an illustrative example, Soft Augmentation
can be easily extended to a larger repertoire of transforms
such as affine transforms and photometric distortions, as
seen in the more sophisticated augmentation policies such
as RandAugment. As the formulation of Equation 7 (and
Figure 2 right) is directly inspired by the qualitative shape
of human vision experiments from Tang et al. [44], optimal
softening curves for other transforms may be discovered by
similar human experiments. However, results with a sec-
ond transform in Appendix Table 6 suggest that Equation 7
generalizes to additive noise augmentation as well. A po-
tential challenge is determining the optimal softening strat-
egy when a combination of several transforms are applied to
an image since the cost of a naive grid search increases ex-
ponentially with the number of hyperparameters. Perhaps
reinforcement learning methods as seen in RandAugment
can be used to speed up the search.

Other tasks. While we limit the scope of Soft Augmen-
tation to image classification as it is directly inspired by hu-
man visual classification research, the idea can be general-
ized to other types of tasks such as natural language mod-
eling and object detection. Recent studies have shown that

detection models benefit from soft learning targets in the fi-
nal stages [3,27], Soft Augment has the potential to comple-
ment these methods by modeling information loss of image
transform in the models’ input stage.

Class-dependant augmentations. As pointed out by
Balestriero et al. [2], the effects of data augmentation are
class-dependent. Thus assumption 3 of Equation 7 does not
exactly hold. One can loosen it by adaptively determining
the range of transform and softening curve on a per class or
per sample basis. As shown in Equation 11,

(xi, yi) ⇒
(
tϕ∼S(xi,yi)(xi), gα(ϕ,xi,yi)(yi)

)
, (11)

two adaptive improvements can be made: 1) the transforma-
tion range S where ϕ is drawn from can be made a function
of sample (xi, yi), 2) the softening factor α can also adapt to
(xi, yi). Intuitively, the formulation recognizes the hetero-
geneity of training samples of images at two levels. Firstly,
the object of interest can occupy different proportions of
an image. For instance, a high-resolution training image
with a small object located at the center can allow more ag-
gressive crop transforms without losing its class invariance.
Secondly, texture and shape may contribute differently de-
pending on the visual class. A heavily occluded tiger may
be recognized solely by its distinctive stripes; in contrast,
a minimally visible cloak can be mistaken as almost any
clothing.

6. Conclusion
In summary, we draw inspiration from human vision re-

search, specifically how human visual classification perfor-
mance degrades non-linearly as a function of image occlu-
sion. We propose generalizing data augmentation with in-
variant transforms to Soft Augmentation where the learning
target (e.g. one-hot vector and/or sample weight) softens
non-linearly as a function of the degree of the transform ap-
plied to the sample.

Using cropping transformations as an example, we em-
pirically show that Soft Augmentation offers robust top-1
error reduction across Cifar-10, Cifar-100, ImageNet-1K,
and ImageNet-V2. With a fixed softening curve, Soft Aug-
mentation doubles the top-1 accuracy boost of the popular
RandAugment method across models and datasets, and im-
proves performance under occlusion by up to 4×. Combin-
ing Soft Augment with the more recently developed Triv-
ialAugment further improves model accuracy and calibra-
tion simultaneously, outperforming even compute-heavy 5-
ensemble models. Finally, self-supervised learning exper-
iments demonstrate that Soft Augmentation also general-
izes beyond the popular supervised one-hot classification
setting.



References
[1] Devansh Arpit, Stanisław Jastrzębski, Nicolas Ballas, David
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Appendix A. Implementation

1import torch
2

3class SoftCropAugmentation:
4def __init__(self, n_class, sigma=0.3, k=2):
5self.chance = 1/n_class
6self.sigma = sigma
7self.k = k
8

9def draw_offset(self, limit, sigma=0.3, n
=100):

10# draw an integer from a (clipped)
Gaussian

11for d in range(n):
12x = torch.randn((1))*sigma
13if abs(x) <= limit:
14return int(x)
15return int(0)
16

17def __call__(self, image, label):
18# typically, dim1 = dim2 = 32 for Cifar
19dim1, dim2 = image.size(1), image.size(2)
20# pad image
21image_padded = torch.zeros((3, dim1 * 3,

dim2 * 3))
22image_padded[:, dim1:2*dim1, dim2:2*dim2]

= image
23# draw tx, ty
24tx = self.draw_offset(dim1, self.

sigma_crop * dim1)
25ty = self.draw_offset(dim2, self.

sigma_crop * dim2)
26# crop image
27left, right = tx + dim1, tx + dim1 * 2
28top, bottom = ty + dim2, ty + dim2 * 2
29new_image = image_padded[:, left: right,

top: bottom]
30# compute transformed image visibility

and confidence
31v = (dim1 - abs(tx)) * (dim2 - abs(ty)) /

(dim1 * dim2)
32confidence = 1 - (1 - self.chance) * (1 -

v) ** self.k
33return new_image, label, confidence

Listing 1. Pytorch implementation of Soft Crop Augmentation for
Cifar.

1import torch
2import torch.nn.functional as F
3

4def soft_target(pred, label, confidence):
5log_prob = F.log_softmax(pred, dim=1)
6n_class = pred.size(1)
7# make soft one-hot target
8one_hot = torch.ones_like(pred) * (1 -

confidence) / (n_class - 1)
9one_hot.scatter_(dim=1, index=label, src=

confidence)
10# compute weighted KL loss
11kl = confidence * F.kl_div(input=log_prob,
12target=one_hot,
13reduction=’none’).

sum(-1)
14return kl.mean()

Listing 2. Pytorch implementation of Soft Target loss function.

Appendix B. Experiment Details
Appendix B.1. Supervised Cifar-10/100

For Cifar-100 experiments, we train all ResNet-like
models with a batch size 128 on a single Nvidia V100 16GB
GPU on Amazon Web Services (AWS) and with an intial
learning rate 0.1 with cosine learning rate decay over 500
epochs. EfficientNet-B0 is trained with an initial learning
rate of 0.025, PyramidNet-272 is trained with 2 GPUs. We
use the Conv-BatchNorm-ReLU configuration of ResNet
models [16] and WideResNet-28 with a widening factor of
10 [50]. Horizontal flip is used in all experiments as it is
considered a lossless transformation in the context of Ci-
far images. We find decaying crop aggressiveness towards
the end of training (e.g., last 20 epochs) by a large fac-
tor (e.g., reducing σ by 1000×) marginally improve per-
formance on Cifar-100, but slightly hurts performance on
Cifar-10. Accordingly, we only apply σ decay for all Cifar-
100 experiments. A single run of ResNet-18, ResNet-50,
and WideResNet-28 takes ∼ 2.5, ∼ 7, ∼ 9 GPU hours on
Cifar-10/100, respectively.
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Figure 6. Example images of the Cifar-100 validation set and pre-
dictions of WideResNet-28. Predicted classes and confidence lev-
els of models trained with Soft Augmentation + Trivial Augment
(SA+TA) and baseline (BL) augmentation are reported. In many
cases, SA+TA not only corrects the class prediction, but also im-
proves the model confidence. For instance, BL mistakes “seal”
for “beaver” (top-left, both classes belong to the same “aquatic
mammal” superclass), and SA+TA makes a correct class predic-
tion with higher confidence.



Appendix B.2. Additional Results
Table 5. Comparing SA with other methods. Recommended
hyperparameters for Mixup [53], Cutout [11], and Online Label
Smoothing [52]. α of Focal Loss is tuned as Lin et al. [29] did
not prescribe an optimal α for Cifar classification. Top-1 errors of
ResNet-18 on Cifar-100 are reported.

ResNet-18 Top-1 Error

Zhang et al. [53]
Baseline 25.6
Mixup 21.1

Kim et al. [21]
Baseline 23.67
Mixup 23.16

Manifold Mixup 20.98
Puzzle Mix 19.62

Kim et al. [20]
Baseline 23.59
Mixup 22.43

Manifold Mixup 21.64
Puzzle Mix 20.62
Co-Mixup 19.87

Our Baseline 20.80±0.11

Label Smoothing 19.47±0.18

Online Label Smoothing 20.12±0.05

Focal Loss (α = 1) 20.45±0.08

Focal Loss (α = 2) 20.38±0.08

Focal Loss (α = 5) 20.69±0.17

Mixup (α = 1.0) 19.88±0.38

Cutout (L = 8) 20.51±0.02

SA 18.31±0.17

RA 20.99±0.11

SA + RA 18.10±0.20

Table 6. Soft Augmentation with additive noise improves ResNet-
18 performance on Cifar-100. Given an image X and a random
noise pattern Xnoise, and augmented image is given by Xaug =
X + αXnoise, where α is drawn from N(0, 0.1) and pixel values
of Xnoise are also independently drawn from N(0, 0.1). Apply-
ing Soft Augmentation to additive noise boost performance over
baseline as well as Soft Augmentation Crop + RandAugment.

ResNet-18 Top-1 Error

Baseline 20.80±0.11
RA 20.99±0.11

Hard Crop 20.26±0.12

SA-Crop (k=2) 18.31±0.17

Hard Noise 20.68±0.05

SA-Noise (k=1) 19.20±0.20
SA-Crop (k=2) + RA 18.10±0.20

SA-Noise (k=1) + SA-Crop (k=2) + RA 17.87±0.17

Table 7. Soft Augmentation reduces expected calibration error
(ECE) of ResNet-50 on ImageNet.

Dataset Baseline RA SA RA+SA

ImageNet-1K 5.11 4.09 3.17 2.78
ImageNet-V2 9.91 8.84 3.24 3.18

Appendix B.3. ImageNet

All ImageNet-1k experiments are conducted with a
batch size of 256 distributed across 4 Nvidia V100
16GB GPUs on AWS. The ImageNet Large Scale Visual
Recognition Challenge (ILSVRC) 2012 dataset (BSD 3-
Clause License) is downloaded from the official website
(https://www.image-net.org/). Horizontal flip is used in all
experiments as an additional lossless base augmentation.
The base learning rate is set to 0.1 with a 5-epoch linear
warmup and cosine decay over 270 epochs. A single run
of ResNet-50 training takes ∼ 4 × 4 = 16 GPU days and
ImageNet experiments take a total of 600 GPU days.

We use the official PyTorch [38] implementation of Ran-
dAugment and ResNet-50/101 (BSD-style license) and run
all experiments with the standard square input Linput =
W = H = 224. Note that the original RandAugment [8]
uses a larger input size of H = 224,W = 244, but our
re-implemention improved top-1 error (22.02 vs 22.4) of
ResNet-50 despite using a smaller input size. ImageNet-V2
is a validation set proposed by He et al. [39].

For training, the standard crop transform has 4 hy-
perparameters: (scalemin, scalemax) define the range of
the relative size of a cropped image to the original one,
(ratiomin, ratiomax) determine lower and upper bound
of the aspect ratio of the cropped patch before the final
resize step. In practice, a scale is drawn from a uni-
form distribution U(scalemin, scalemax), then the loga-
rithm of the aspect ratio is drawn from a uniform dis-
tribution U(log(ratiomin), log(ratiomax)). Default val-
ues are scalemin = 0.08, scalemax = 1.0, ratiomin =
3/4, ratiomax = 4/3.

Similar to our Cifar crop augmentation, we propose a
simplified ImageNet crop augmentation with only 2 hy-
perparameters σ, Lmin.. First, we draw ∆w,∆h from a
clipped rectified normal distribution NR(0, σ(L − Lmin))
and get w = W − ∆w, h = H − ∆h Lmin is the mini-
mum resolution of a cropped image and set to half of input
resolution 224. tx, ty are then independently drawn from
N(0, σ(W + w), N(0, σ(H + h). Note that we use a fixed
set of intuitive values σ = 0.3, Lmin = 1/2Linput = 112
for all the experiments.

For model validation, standard augmentation practice
first resizes an image so that its short edge has length
Linput = 256, then a center 224 × 224 crop is applied.
Note that Linput is an additional hyperparameter introduced
by the test augmentation. In contrast, we simplify this by
setting Linput to the final input size 224 and use this con-
figuration for all ImageNet model evaluation.
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Figure 7. Examples of occluded ImageNet validation images and model predictions of ResNet-50.



Appendix B.4. Self-Supervised Cifar-10/100

Self-supervised SimSiam experiments are run on a sin-
gle Nvidia A6000 GPU. We follow the standard two-step
training recipe [6]. 1) We first train the Siamese network
in a self-supervised manner to learn visual features for 500
epochs with a cosine decay schedule and a batch size of
512. We apply Soft Augmentation only during this step. 2)
The linear layer is then tuned with ground-truth labels for
100 epochs with an initial learning rate of 10 and 10× de-
cay at epochs 60 and 80. Following [6], we set scalemin =
0.2, scalemax = 1.0, ratiomin = 3/4, ratiomax = 4/3.
Since down-weighting training samples in a batch effec-
tively reduces learning rate and SimSiam is sensitive to it,
we normalized the weight in a batch so that the mean re-
mains 1 and re-tuned the learning rate (Table 8).

Table 8. Soft Augmentation improve self supervised learning with
SimSiam. Mean ± standard error of top-1 validation errors of
three runs of ResNet-18 are reported.

Task lr baseline SA#1 ∆ #1 SA#2 ∆ #2

Cifar100

0.1 39.50±0.13 40.21±0.03 +0.71 37.39±0.06 −2.11
0.2 37.64±0.06 36.61±0.05 −1.03 39.20±0.42 +1.56
0.4 40.28±2.49 37.68±0.06 −2.60 Diverged -
0.5 43.26±3.03 41.94±0.04 −1.32 Diverged -
0.8 78.88±9.05 55.44±4.15 −23.44 Diverged -

Cifar10 0.2 9.87±0.03 9.31±0.01 −0.56 - -

Table 9. SimSiam k tuning on Cifar-100 (single run)

learning rate k Top-1 Error

0.2

1 37.78
2 37.27
3 36.34
4 36.31

Appendix C. Effects of Target Smoothing and
Loss Reweighting on Loss Func-
tions

Consider the KL divergence loss of a single learning
sample with a one-hot ground truth vector ytrue, and the
softmax prediction vector of a model is denoted by ypred:

L(ypred,ytrue) =w ∗DKL(y
true||ypred)

=w ∗
N∑

n=1

ytruen ∗ log(y
true
n

ypredn

), (12)

let n∗ be the ground truth class of an N -class classifica-
tion task, Equation 12 can be re-written as:

L(ypred,ytrue) = −w ∗ ytruen∗ ∗ log(ypredn∗ )

+w ∗

ytruen∗ ∗ log(ytruen∗ ) +
∑
n ̸=n∗

ytruen ∗ log(y
true
n

ypredn

)

 .

(13)

In the case of hard one-hot ground truth target where
ytruen∗ = 1 and ytruen = 0, n ̸= n∗, with the default weight
w = 1 it degenerates to cross entropy loss:

L(ypred,ytrue) = −log(ypredn∗ ), (14)

Now we apply label smoothing style softening to the
one-hot target ytrue so that ytruen∗ = p and ytruen = (1 −
p)/(N − 1) = q, n ̸= n∗:

L(ypred,ytrue) = −p ∗ log(ypredn∗ )

+

p ∗ log(p) + ∑
n ̸=n∗

q ∗ log( q

ypredn

)

 . (15)

If q is not distributed, and ytruen = 0, n ̸= n∗ (This con-
figuration does not correspond to any of our experiments):

L(ypred,ytrue) = −p ∗ log(ypredn∗ ) + p ∗ log(p), (16)

When only weight w is softened to w = p:

L(ypred,ytrue) = −p ∗ log(ypredn∗ ). (17)

Note that p is not a function of model weights, so when
we take the derivative w.r.t. model weights to compute gra-
dient, Equations 16 and 17 yield the same gradient.

When both the one-hot label and weight are softened
with p:

L(ypred,ytrue) = −p2 ∗ log(ypredn∗ )

+ p ∗

p ∗ log(p) + ∑
n ̸=n∗

q ∗ log( q

ypredn

)

 . (18)

The three types of softening in Section 4 are unique as
suggested by Equations 15, 17, and 18.
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