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1. Additional Experiments for DDL
1.1. Computational cost

For a more fair comparison, we compare the EDSR
and DDL-EDSR in terms of their computational costs. As
shown in Tab. 1, the DDL method improves SR perfor-
mance at the cost of slightly increased model parameters
and FLOPs. To rigorously evaluate the DDL, we enrich
the baseline EDSR model to a deeper version (denoted as
EDSRY). It can be observed that our proposed DDL-EDSR
still shows a remarkable performance gain compared with
EDSRY, indicating the effectiveness of the proposed DDL
method.

1.2. Ablation study of DDL-EDSR

We conduct an ablation study on the different compo-
nents of the DDL method. We isolate the impact of the
dual-domain model structure and the dual-domain loss. Re-
sults shown in Tab. 2 imply that the standalone use of either
dual-domain structure or loss can benefit SR performance
(respectively improve the PSNR metric by 0.318 dB and
0.053 dB). Together use of the dual-domain structure and
loss (i.e. our full DDL method) can bring more PSNR gains
(0.531 dB).

1.3. Extension to RCAN

To further demonstrate the effectiveness of the pro-
posed DDL strategy, we implement DDL based on RCAN
[7], and term the model as DDL-RCAN. The modifica-
tions on RCAN are two-fold: 1) All residual channel at-
tention blocks (RCAB) are replaced by proposed DDL-
RCAB. Similar to DDL-RB, DDL-RCAB adopts two par-
allel branches to extract informative features in the spatial
and frequency domains, respectively. The output features of
the two branches are fused and them modulated by another
channel attention module. 2) As implemented in DDL-
EDSR, two output heads are developed to reconstruct SR
images and spectra simultaneously. We train DDL-RCAN
under the same setting of RCAN for a fair comparison. The
quantitative results on benchmarks are shown in Tab. 3. We
can observe the remarkable and consistent performance im-
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Figure 1. Reconstruction PSNR metrics and average spectral

uncertainty with the increase of MC samples. The results are
obatined on Set5 [ 1] for x4 SR.

provement across scales and benchmarks is obtained when
combining RCAN with the DDL method. This demonstrate
the effectiveness and versatility of our proposed DDL. Any
other CNN backbones for image SR can utilize it to boost
model performance.

2. Number of MC samples

In this work, we employ MC-dropout [3] to approximate
Bayesian inference. MC samples are generated through
multiple stochastic forward passes. Determining the num-
ber of MC samples is an important issue. Previous work [6]
shows that more MC samples could yield better SR re-
construction as well as more accurate uncertainty estimate.
Here we also investigate the effect of MC samples for SR
performance and spectral uncertainty. As seen in Fig. 1,
both reconstruction PSNR and spectral uncertainty increase
with the increase of MC samples, and then converge to sta-
ble values. Consider the performance-efficiency trade-off,
we choose 40 as the number of MC samples.



Table 1. Comparison of PSNR metric and computational cost for x2 SR. EDSRT denotes a deeper EDSR with 20 residual blocks.

model | Urbanl00 | Mangal09 | Params (M) | FLOPs (G)

EDSR 31.881 38.362 1.37 90.0

EDSR¥ 32.018 38.471 1.66 109.3
DDL-EDSR 32.412 38.897 1.64 107.3

Table 2. Ablation study of DDL method on Urban100 at X2 scale.

Dual-domain structure  Dual-domain loss || PSNRT  SSIM|
31.881  0.9263

v 32.199 0.9288

v 31.934 0.9266

v v 32412  0.9308

Table 3. Quantitative evaluation of the proposed DDL method based on RCAN.

Model Scale Set5 Setl4 B100 Urban100 Mangal09
PSNRT SSIMT PSNRT SSIMT PSNRT SSIMT PSNRT SSIMT PSNRT SSIMT
RCAN <2 38.27 09614  34.12 09216 3241 0.9021 3334 09384 3944  0.9786
DDL-RCAN 38.38 09617 3427 0.9230 32.52 09025 33.65 0.9401 39.74  0.9792
RCAN %3 3474 0.9299 30.65 0.8482 2932 08111 29.09  0.8702 34.44  0.9499
DDL-RCAN 3496 09310 30.79 0.8499 2941 0.8126 29.34 0.8754 3472  0.9525
RCAN 4 32.63 0.9002  28.87 0.7889  27.77 0.7436  26.82  0.8087 31.22 09173
DDL-RCAN 32.85 0.9021 2899  0.7902 28.84 0.7444 2696 0.8132 31.45 0.9194

3. Adversarial Attack in which 7 is the step size of each update which is set to 1

3.1. Projected Gradient Descent

So as to quantify spectral uncertainty under adversarial
attacks, projected gradient descent (PGD) algorithm [4] is
employed to generate adversarial LR images. The goal is
to add a perturbation on input LR where the perturbation is
visually imperceptible but could cause SR models produce
unwanted artifacts. Formally, PGD is to solve the optimiza-
tion problem:

arg max L(I™F5),
dEA (D)
LI 6) = [|F(I) = F(I* + 6]

where f(-) is a well-trained SR model. § is the perturbation
on I*® . A denotes an allowable set of perturbations. PGD
uses the infinite norm ball as the A:

A={0: [0l <~} )

in which x is a hyper-parameter of perturbation level. To
solve the optimization problem, PGD follows the iterative
update rule:

5,54,_1 = 5t + UM szgn(V5£(ILR,5)),

6t+1 = min(mam‘((5t+1, _"Q)a K/)7

3)

in this work. After T iterations, adversarial LR images can
be obtained by IXF + ;.

3.2. Results under Adversarial Attacks

The quantitative results of image SR (x4) and the cor-
responding spectra uncertainty under adversarial attacks of
diverse perturbation levels are exhibited in Tab. 4. One can
observe that a very small perturbation (v = 1/255) could
result in severe performance drop. Bayesian model shows
a better robustness against such adversarial attacks. With
the increase of perturbation levels, the SR performance de-
teriorates more heavily. As for reconstruction uncertainty,
spectral uncertainty increases with the increase of perturba-
tion levels.

3.3. Partial Adversarial Attack

Instead of adding a perturbation on the whole region of
the given LR image, partial adversarial attack aims to attack
some specific parts [2]. Here we only exert perturbations on
the left half of the given LR image, as displayed in Fig. 2.
Even if the spectral uncertainty behaves more sensitive in
detecting adversarial attacks, it seems to be incompetent in
locating image regions which are under attacks since it cap-
tures reconstruction uncertainty in a global way. Therefore,



Table 4. The SR (x4) performance and spectral uncertainty under
adversarial attacks.

Model Attack level | PSNR | Spectral uncertainty

DDL-EDSR 07255 30.10 /
Bayesian

DDL-EDSR 0/255 29.97 0.3644

DDL-EDSR 1/255 24.43 /
Bayesian

DDIL-EDSR 1/255 26.57 0.4144
Bayesian

DDL-EDSR 2/255 23.09 0.4533
Bayesian

DDL-EDSR 3/255 20.79 0.4878
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Figure 2. Dual-domain x4 SR results and corresponding uncer-
tainty under partial adversarial attacks of different perturbation
levels. From top to bottom: the perturbation level is 0/255 (without
attack), 1/255, 2/255, 3/255. The example image is from B100 [5].

the proposed spectral uncertainty has pros and cons. Spatial
pixel-wise and spectral frequency-wise uncertainty comple-
ment each other and can be employed jointly to quantify
image SR uncertainty locally and globally.
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