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We refer to the project website (https://kunhao-
liu.github.io/StyleRF/) for more results, compar-
isons with baselines, and application demonstrations. This
document provides supplementary materials in 1) proof of
deferred style transformation, 2) implementation details, 3)
runtime comparisons, 4) user studies, and 5) limitations,
more details to be found in the ensuing subsections.

1. Proof of Deferred Style Transformation

In this section, we provide proof that applying deferred
style transformation (DST) on 2D feature maps is equiva-
lent to applying style transformation on 3D points’ features.
This is also the full derivation of Eq. (9) in the main paper.

The DST on 2D feature maps can be mathematically for-
mulated by:

Fcs = conv
(
T ⊗ F̄c

)
× σ(Fs) + wr × µ(Fs),

where F̄c =

N∑
i=1

wiF̄i, wr =

N∑
i=1

wi, r ∈ R

wi denotes the weight of sampled point i, F̄i denotes the
feature of sample i after sampling-invariant content trans-
formation, R denotes the set of rays in each training batch,
conv is a 1 × 1 convolution layer without bias, and ⊗ de-
notes matrix multiplication.

Note that 1×1 convolution layer without bias is basically
a matrix multiplication operation. We can thus move the
scalar multiplication outside the conv as follows:

*Shijian Lu is the corresponding author.
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We can see that
∑N

i=1 wi

(
F(i)

)
has the same form as

the volume rendering (Eq. (1) in the main paper), where
F(i) becomes the transformed feature of the sampled point.
Hence, DST is equivalent to a transformation that is inde-
pendently applied to each 3D point, which keeps the multi-
view consistency.

2. Implementation Details

Style transformation matrix generation network. We
present the architecture of the style transformation matrix
T in Fig. 1(a). Following [7], we formulate T from the fea-
ture covariance cov(Fs). Specifically, we apply a sequence
of 1D convolution layers to the sequentialized style features
−→
Fs, and then compute the feature covariance cov(Fs). Fi-
nally, we apply a linear layer to the feature covariance to get
the style transformation matrix T .
Estimation of the mean and variance. We adopted the
running estimation technique to estimate the mean and vari-
ance. At training iteration i(i > 0), the estimated statistics
x̂i is computed by x̂i = mxi + (1 −m)x̂i−1 , where m is
the momentum which is set to 1e − 4, xi is the calculated
batch statistics (i.e. mean and variance), and x̂0 = x0.
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Figure 1. Model architecture. We present the architectures of the
style transformation matrix generation network in (a) and the CNN
decoder in (b). The formatting of convolution layers is (number
of input channels, number of output channels, kernel size, stride)
and the formatting of linear layers is (number of input channels,
number of output channels). Seq denotes sequentialization, Cov
denotes covariance matrix.

CNN decoder. We present the architecture of the CNN de-
coder in Fig. 1(b). Unlike [4, 9], we do not use a standard
U-Net [11] decoder that first downsamples and then upsam-
ples the feature maps. According to our experiments, the
standard U-Net decoder introduces clear multi-view incon-
sistency as the downsample-upsample operations increase
the receptive field of the decoder. Thus we construct the de-
coder only using a sequence of 2D convolution layers with-
out downsample-upsample operations.

Training settings. We train our model on a single RTX
A5000 GPU. We use style images from WiKiArt [10] as the
training data, which contains about 80, 000 samples. In the
feature grid training stage (first stage), we train the model
for 25K iterations using the Adam optimizer [6]. The learn-
ing rate of the feature grid is set to 0.02 and the learning rate
of the decoder is set to 1e-4. We further apply a TV regu-
larization to the feature grid to encourage the smoothness
of the feature grid which improves the stylization quality
clearly. In the stylization training stage (second stage), we
also train the model for 25K iterations using the Adam op-
timizer. We freeze the feature grid and finetune the decoder
with the learning rate of 1e-5 and train the stylization mod-
ule with the learning rate of 1e-4. We set C = 256 and
C ′ = 32. During training, we randomly sample rays from
all training rays while calculating the first term of Eq.(10)
and randomly crop patches from a random training view
while calculating the last two terms.

Method First-stage training Second-stage training Inference (per frame)

Hyper [2] ∼4 days ∼2 days 50s
Ours 1h 58min 3h 10min 18s

Table 1. Runtime comparisons.

Method Consistency Stylization

AdaIN [5] 0.02 0.05
CCPL [13] 0.07 0.08

ReReVST [12] 0.26 0.20
LSNV [4] 0.13 0.17
Hyper [2] 0.10 0.03

Ours 0.42 0.47

Table 2. User study. We present the user preference scores
of StyleRF and the state-of-the-art baselines. Best score ,
second best score and thrid best score are in red, orange and

yellow respectively.

3. Runtime Comparisons

Tab. 1 shows quantitative comparisons with another
NeRF-based zero-shot style transfer method Hyper [7] on
training and inference time. All the evaluations are per-
formed on a single NVIDIA RTX A5000 GPU with 24G
of memory and tested on 4 scenes of LLFF [32] dataset.

4. User Study

We perform a user study to compare our method to the
3D zero-shot style transfer baselines. The user study in-
volved 30 participants with different occupations, ages, and
races. Specifically, we show each user a series of stylization
results, including a video of original scene, a style image
and corresponding videos stylized by our StyleRF and base-
lines. The users then choose one stylized video that better
matches the given style image and one video that has bet-
ter multi-view consistency. In total, we provide 30 scene-
style pairs, which are randomly divided into 6 groups. Each
user is asked to rate a random group. The results in Tab. 2
demonstrate the superiority of the proposed StyleRF.

5. Limitations

Despite the superior stylization quality and generaliz-
ability to new styles, StyleRF has two limitations. First,
StyleRF has to be trained for every 3D scene since NeRF
[8] is a per-scene-per-model method. This limitation could
be mitigated by incorporating generalizable NeRF models
such as [14] for better generalizability to new 3D scenes.
Second, the current StyleRF does not support 360◦ un-
bounded scenes. We can extend StyleRF with multi-sphere
images like [3] or use coordinate parameterization like
[1, 15] for supporting 360◦ unbounded scenes.
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