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A. Multimedia Video

The multimedia video file video.mp4 presents exam-
ples generated by the LAM-LRS3-AVoX-VSR model (as
described in Sec. 4.3) with cropped lip images from CelebA
and speech clips from Librispeech. We recommend turning
on speakers to note the lip-syncing performance.

B. Architecture Details

B.1. VSR Model

Here, we describe the details of the VSR model (as ref-
erenced in Sec. 3.1 of the main paper), which is the same
as that used in the previous work [1, 2]. The architecture
of the VSR model is depicted in Fig. 1. The visual front-
end consists of a 3D convolutional layer with a kernel size
of 5 × 7 × 7 followed by a ResNet-18 model. The visual
features produced by the last residual block are aggregated
along the spatial dimension by a global average pooling
layer. Next, we use the Conformer encoder to model the
visual features extracted by the front-end. Each Conformer
block has a feed-forward module, a self-attention module,
a convolution module, and a second feed-forward module
stacked in order. We first use a linear layer to project the
front-end embedding to a D-dimensional space, where D is
the dimension of the Conformer encoder input embedding.
The projected features are added with the relative position
information and further passed through the Conformer en-
coder backbone. Then, we use the Transformer decoder
to map text the visual representation to a distribution over
word-piece tokens. The decoder is composed of an em-
bedding layer and a stack of Transformer decoder blocks,
each decoder block consists of a self-attention module, an
encoder-decoder cross-attention layer, and a feed-forward
layer. Layer normalization is added before each module.
The prefixes from index 1 to l - 1 are projected to embed-
ding vectors, where l is the length of target tokens. The ab-
solute positional encoding is added to the embedding. The
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Figure 1. The VSR model used in this work is based on a Con-
former encoder, a 3D ResNet visual front-end, and a combination
of CTC and attention-based decoder.

decoder generates the token sequence y = (y1, y2, ..., yl) in
autoregressive manner by factorising the joint probability
distribution:

PDecoder(y|ze) =
l∏

i=1

P (yi|ze, y1:i−1), (1)

where l is the length of the target token sequence and ze
is the features extracted by the Conformer encoder.

We use a combination of CTC loss and attention-based
CE loss as the training objectives of the baseline VSR
model. A linear projection layer is used to map the high-
level visual feature sequence into the output probabili-
ties to compute the CTC loss. The CTC criterion as-
sumes conditional independence between the output predic-
tions and the estimated sequence posterior has the form of
PCTC(y|x) ≈

∏T
t=1 p(yt|x), and the CTC loss is defined

as LCTC = − logPCTC(y|x), where x is the input video.
The attention-based CE loss is calculated based on Equa-
tion (1): LCE = − logPDecoder(y|ze). The VSR training
objective is computed as follows:

L = αLCTC + (1− α)LCE , (2)



where α controls the relative weight in CTC and CE losses.
α was set to 0.1 in this work. In the evaluation, we use the
model averaged over the last 10 checkpoints for decoding.

B.2. Speech-Driven Lip Animation

We describe the implementation details (as referenced in
Sec. 4.3 of the main paper) of the proposed speech-driven
lip animation model. Specifically, the image encoder is a
5-layer 2D CNN. Batch normalization and ReLU activation
are used for the first four layers while the last layer uses
tangent activation. The image encoder maps a 96 × 96 in-
put image to a 512-dimensional latent representation. The
speech encoder is a stack of six 1D CNN followed by a 2-
layer GRU. Batch normalization and ReLU activation are
used for the first five layers while the last layer uses tan-
gent activation. After that, the encoded speech chunks are
fed to the GRU layers, which produce a 256-dimensional
latent feature. We use StyleGAN2 as the frame decoder. In-
stead of generating frames from a constant input, our Style-
GAN2 decoder uses the penultimate layer of the image en-
coder. The frame discriminator is a 5-layer CNN that de-
termines whether a frame is real or not conditioned on the
target frame. Batch normalization and Leaky ReLU acti-
vation are used after each convolution layer except for the
last layer. The sequence discriminator is a 5-layer spatial-
temporal CNNs, followed by a GRU layer and a single clas-
sifier layer. Batch normalization and ReLU activation are
used first four layers and the fifth layer uses tangent activa-
tion. The detailed configurations of the image encoder, the
speech encoder, the frame discriminator and the sequence
discriminator are listed in Tab. 1, Tab. 2, Tab. 3, Tab. 4, re-
spectively. We refer to the configuration of a convolutional
layer as Conv[(kernel size), (stride), (padding) @ Chan-
nels], BN and Tanh indicates the Batch normalization and
tangent activation, respectively.

Layers Image Encoder

1 Conv2d[(4, 4) (2, 2) (1, 1) @ 64], BN, ReLU
2 Conv2d[(4, 4) (2, 2) (1, 1) @ 128], BN, ReLU
3 Conv2d[(4, 4) (2, 2) (1, 1) @ 256], BN, ReLU
4 Conv2d[(4, 4) (2, 2) (1, 1) @ 512], BN, ReLU
5 Conv2d[(6, 6) (1, 1) (0, 0) @ 512], Tanh

Table 1. Architecture of the image encoder.

C. Experimental Details and Results
C.1. VSR Pre-training in Low-Resource Setting

Here, we discuss the VSR pre-training details as refer-
enced in Sec. 4.4 of the main paper. Because supervised
training VSR models from scratch with long sequences of-
ten pose optimization problems, we first use 30 hours of

Layers Speech Encoder

1 Conv1d[(80,) (16,) (32,) @ 16], BN, ReLU
2 Conv1d[(4,) (2,) (1,) @ 32], BN, ReLU
3 Conv1d[(4,) (2,) (1,) @ 64], BN, ReLU
4 Conv1d[(4,) (2,) (1,) @ 128], BN, ReLU
5 Conv1d[(10,) (5,) (3,) @ 256], BN, ReLU
6 Conv1d[(5,) (1,) (0,) @ 256], Tanh
7 GRU @ 256
8 GRU @ 256

Table 2. Architecture of the speech encoder.

Layers Frame Discriminator

1 Conv2d[(4, 4) (2, 2) (1, 1) @ 32], BN, LeakyReLU
2 Conv2d[(4, 4) (2, 2) (1, 1) @ 64], BN, LeakyReLU
3 Conv2d[(4, 4) (2, 2) (1, 1) @ 128], BN, LeakyReLU
4 Conv2d[(4, 4) (2, 2) (1, 1) @ 256], BN, LeakyReLU
5 Conv2d[(6, 6) (1, 1) (0, 0) @ 1]

Table 3. Architecture of the frame discriminator.

Layers Sequence Discriminator

1 Conv3d[(7, 4, 4) (1, 2, 2) (3, 1, 1) @ 64], BN, ReLU
2 Conv3d[(1, 4, 4) (1, 2, 2) (0, 1, 1) @ 128], BN, ReLU
3 Conv3d[(1, 4, 4) (1, 2, 2) (0, 1, 1) @ 256], BN, ReLU
4 Conv3d[(1, 4, 4) (1, 2, 2) (0, 1, 1) @ 256], BN, ReLU
5 Conv3d[(1, 6, 6) (1, 1, 1) (0, 0, 0) @ 128], Tanh
6 GRU @ 512
7 Linear @ 1

Table 4. Architecture of the sequence discriminator.

LRS3 and 944 hours of Librispeech synthetic data to pre-
train a SMALL VSR model with 12-layer Conformer en-
coder, 6-layer Transformer decoder, 256 input dimensions,
2048 feed-forward dimensions and 4 attention heads (en-
coder and decoder have same dimensions and attention
heads). The SMALL model is further fine-tuned using 30
hours of LRS3 data. We pre-train and fine-tune the SMALL
model for 75 and 25 epochs, respectively. The VSR WER
after pre-training and fine-tuning are 58.9% and 52.6%, re-
spectively, as shown in Tab. 5. The other training hyper-
parameters are the same as we used in Sec. 4.3. As the
SMALL model has the same visual front-end as the BASE
model, we initialize the visual front-end weights of the
BASE model from the fine-tuned SMALL model for the
low-resource labeled data setting.

C.2. VSR Baseline in High-Resource Setting

In Sec. 4.6 of the main paper, we only consider the
BASE VSR model trained with 438 hours of LRS3 and
2630 hours of pseudo-labeled data as the baseline system,
since we found LARGE model suffers from some con-



VSR model Training data WER (%)
SMALL-pretrain LRS3 (30 hrs) + LBS-Synth 58.9
SMALL-finetune LRS3 (30 hrs) 52.6

Table 5. WER of pre-trained (SMALL-pretrain) and fine-tuned
(SMALL-finetune) SMALL VSR models. WER is calculated
without using the language model.

vergence problems during training, which was potentially
caused by its much larger model size.

C.3. Experimental Results for Synthetic Video Data
with Multiple Lip Images.

Here, we studied the effect of the scale of Librispeech
synthetic data (LBS-Synth) generated from the LAM-
LRS3-VSR-VL model. We conducted one additional exper-
iment using the BASE VSR model under the LRS3 labeled
data setting. In Table 6, we show that double the size of
LBS-Synth leads to further improvement (WER 30.8% to
30.1%). This is done by synthesizing two videos per speech
clip with two CelebA lip images. This experiment further
proves the flexibility and scalability of our synthetic data
generation pipeline, which in principle could lead to unlim-
ited video data for scaling up VSR.

Training data Hours WER w.o. LM (%)
LRS3 + LBS-Synth x1 438 + 944 30.8
LRS3 + LBS-Synth x2 438 + 1,888 30.1

Table 6. Multiple lip images coupled with a single speech leads to
better performance. WER is calculated without using the language
model.
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