
Supplementary Material

The Supplementary Material is organized as follows. In
Sec. A, we provide additional implementation details. In
Sec. B, we present ablations on the NeRF-based pseudo-
labels, showing the effect on their quality of different pa-
rameters and components of our method. In Sec. C, we
report additional evaluations for the one-step adaptation ex-
periments. In Sec. D we include in-detail results for the
multi-step adaptation experiments and ablate on the replay-
based strategy proposed by our method. In Sec. E we ana-
lyze in detail the memory footprint required by our method
and by the different baselines that we compare against in
the main paper. In Sec. F, we provide further visualiza-
tions, including examples of the pseudo-labels and network
predictions produced by our method and the baselines. In
Sec. G, we discuss limitations of our method and potential
ways to address them. We will further release the code to
reproduce our results.

Similarly to the main paper, in all the experiments we
report mean intersection over union (mIoU, in percentage
values) as a metric.

A. Additional implementation details

NeRF. Following Instant-NGP [8, 12], to facilitate train-
ing of the hash encoding, we re-scale and re-center the poses
used to train NeRF so that they fit in a fixed-size cube. For
each ray that is cast from the training viewpoints, to render
the aggregated colors and semantics labels we first sample
256 points at a fixed interval and then randomly select 256
additional points according to the density values of the ini-
tial points.

The base NeRF network uses a multi-resolution hash en-
coding with a 16-level hash table of size 219 and a fea-
ture dimension of 2. Similarly to Semantic-NeRF [14], we
implement the additional semantic head as a 2-layer MLP.
In all the experiments, we train all the components of the
Semantic-NeRF network concurrently, setting the hyperpa-
rameters in Eq. (5) from the main paper to wd = 0.1 and
ws = 0.04 as suggested in [14], sampling 4096 rays for
each viewpoint, and using the Adam [4] optimizer with a
fixed learning rate of 1e−2.

In all the experiments in which the semantic segmenta-
tion model is trained using NeRF-rendered images, we use
Adaptive Batch Normalization (AdaBN) [5] when perform-
ing inference on the ground-truth images, to improve the
generalization ability of the model between NeRF-rendered
images and ground-truth images.
Dataset. For convenience of notation, we re-map the scene
indices in the dataset from 0000− 0706 to 1− 707 (so that
we refer to scene 0000 as scene 1, to scene 0001 as scene 2,
etc.). For sample efficiency, we downsample each sequence
from the original 30 fps to 3 fps, resulting in a total of 100

to 500 frames for each video sequence.
Pre-training. To pre-train DeepLab on scenes 11 − 707
from ScanNet, we initialize the model parameters with the
weights pre-trained on the COCO semantic segmentation
dataset [6]. We then run the pre-training on ScanNet us-
ing the Adam [4] optimizer with batch size of 4, and let the
learning rate decay linearly from 1e−4 to 1e−6 over 150
epochs.
One-step adaptation. In all the one-step experiments with
our method and with the baseline of [3], the semantic seg-
mentation model is trained for 50 epochs with a fixed learn-
ing rate of 1e−5 and batch size of 4. Since CoTTA is an
online adaptation method, in accordance with the settings
introduced in the original paper, we adapt the segmenta-
tion network for a single epoch and with batch size 1, set-
ting the learning rate to 2.5e−6. To prevent overfitting the
semantic segmentation model to the training views of the
new scene, we apply the same data augmentation procedure
as in pre-training in each training step for our method and
for [3]. Since CoTTA already implements a label augmen-
tation mechanism for ensembling, we apply to the method
only the augmentations used by its authors.
Multi-step adaptation. In the multi-step adaptation exper-
iments, we use a batch size of 4 during training, where 2
samples come from the subset of the pre-training dataset
used for replay (cf. main paper), and the other 2 data points
are uniformly sampled from the training frames of the new
scene and the replay buffer of the previous scenes.
Hardware. We train all our models using an AMD Ryzen 9
5900X with 32GB RAM, and an NVIDIA RTX3090 GPU
with 24GB VRAM.

B. NeRF-based pseudo-labels
In the following Section, we present ablations on the

NeRF-based pseudo-labels, showing how the chosen NeRF
implementation and the losses used in our method influence
their segmentation accuracy.

B.1. Comparison of NeRF frameworks

We compare the segmentation quality of the pseudo-
labels obtained with our Instant-NGP [8, 12]-based
implementation to that achieved with the original
Semantic-NeRF [14] implementation, which we adapt
to include the newly-introduced semantic loss (cf. Sec. 3.2
in the main paper and Sec. B.2). To this purpose, we train
a semantics-aware NeRF model for scene 1 with both
the methods, running the experiments 3 times for each
method. In each run, we train the original implementa-
tion of Semantic-NeRF [14] for 200k steps and the one
based on Instant-NGP [12] for 10 epochs (for a total of
10 × 447 = 4470 steps), which allows achieving a similar
color reconstruction quality (measured as PSNR) for the
two methods.



Components Scene

Ld Ls Scene 1 Scene 2 Scene 3 Scene 4 Scene 5 Scene 6 Scene 7 Scene 8 Scene 9 Scene 10 Average

✗ Semantic-NeRF [14] 44.3±1.5 34.2±0.1 22.4±0.9 63.5±1.2 52.3±1.2 47.3±0.5 38.9±0.6 33.8±0.4 32.4±0.5 53.3±0.6 42.2±0.7

✗ Ours 46.4±1.1 33.0±0.2 24.2±0.3 62.6±0.7 53.4±0.7 46.8±1.1 39.3±0.8 34.5±0.6 33.8±0.6 55.8±0.2 43.0±0.6

✓ Semantic-NeRF [14] 44.0±0.6 34.8±0.5 22.8±0.9 63.1±0.7 55.8±2.0 49.1±1.2 39.0±0.8 33.9±0.5 33.0±1.5 55.1±0.6 43.1±0.9

✓ Ours 48.4±0.9 36.0±0.3 26.1±0.4 61.6±0.5 57.0±1.8 50.3±0.6 39.8±0.2 33.5±0.6 35.4±0.7 57.4±0.1 44.6±0.7

Table 1. Effect of the ℓ1 depth loss Ld and of different types of semantic losses (either the original one proposed in [14] or ours) on the
pseudo-label quality. The performance is evaluated on the training views of each scene and averaged over 3 runs.

Semantic-NeRF [14] Instant-NGP [8] (impl. by [12])

PSNR 19.9 ±0.1 19.3 ±0.1

mIoU 50.0 ±0.5 48.4 ±0.9

Model size (MB) 4.9 50.0
Training time / Step (s) 0.19 0.06
Total training time (min) 633 5
Inference time / Image (s) 2.8 0.3

Table 2. Pseudo-label performance on the training views of scene
1, size of the associated model checkpoint, and the training and
inference time using different NeRF frameworks. The implemen-
tation of [14] has been adapted to include the newly-introduced
semantic loss (cf. Sec. 3.2 in the main paper). The results are av-
eraged over 3 runs.

As shown in Tab. 2, the pseudo-labels produced
by both implementations achieve a similar mIoU,
with Semantic-NeRF slightly outperforming Instant-NGP.
Furthermore, the size of the models produced by
Semantic-NeRF is approximately 10 times smaller than the
one required by Instant-NGP, at the cost however of longer
training (∼ 127×) and rendering (∼ 9×) time.

Since in a real-world deployment scenario achieving fast
adaptation might be of high priority, in the main paper we
adopted the faster framework of Instant-NGP. However, the
results above indicate that our method is agnostic to the
specific NeRF framework chosen, and similar segmentation
performance can be achieved by trading off between speed
and model size depending on the main requirements. Fur-
ther evaluations on the memory footprint in comparison also
with the baselines of [3] and [13] are presented in Sec. E.

B.2. Ablation on the NeRF losses

To investigate the effect of depth supervision [1]
(through the ℓ1 depth loss Ld) and of the proposed modifi-
cations to the semantic loss Ls (cf. Sec. 3.2 in the main pa-
per), we evaluate on each scene the pseudo-labels produced
by our method when ablating on these factors. For each
scene, we train the NeRF model for 10 epochs without joint
training, as we find training without semantic loss modifica-
tions is unstable for longer epochs. We run each experiment
3 times and report average and standard deviation across the
runs. As shown in Tab. 1, both components induce a signifi-
cant improvement of the pseudo-label quality. In particular,
depth supervision and the use of our modified semantic loss
instead of the one proposed in [14] produce an increase re-

spectively of 0.9% mIoU and 0.8% mIoU over the baseline
with no modifications. The combined use of both ablated
factors further increases the pseudo-label performance, re-
sulting in a total improvement by 2.4% mIoU.

The effect of the proposed modifications can also be ob-
served in Fig. 1. In particular, as shown in Fig. 1a, the use of
depth supervision is critical for properly reconstructing the
scene geometry. The large number of artifacts in the recon-
struction when the depth loss is not used are also reflected
in the semantic pseudo-labels, which contain large levels of
noise and often fail to assign a uniform class to each entity
in the scene (Fig. 1b). Depth supervision applied together
with the original semantic loss from [14] resolves some of
the artifacts in the pseudo-labels, but still results in subopti-
mal quality. The combined use of depth supervision and of
our modified semantic loss produces cleaner and smoother
pseudo-labels, which also attain higher segmentation accu-
racy, as shown in Tab. 1.

C. One-step adaptation
In this Section, we report additional results on the one-

step adaptation experiments.

C.1. One-step adaptation performance on the train-
ing set of each scene

Since in the scenario of a deployment of the semantic
segmentation network on a real-world system a scene might
be revisited from viewpoints similar to those used for train-
ing, in Tab. 3 we report the one-step adaptation performance
evaluated on the training views. We compare our method to
the baseline of CoTTA [13] and to fine-tuning, both with
the pseudo-labels of [3] and with our NeRF-based pseudo-
labels. For each method, we run the experiments 10 times
and report average and standard deviation across the runs.

Similarly to the results obtained on the validation views
(cf. main paper), our method with joint training obtains the
best average performance across all scenes. Unlike what
observed on the validation views, however, on the training
views joint training does not result in an average perfor-
mance improvement over fine-tuning with our NeRF-based
pseudo-labels (NI + NL). We note however that these re-
sults are largely influenced by the outlier of Scene 5, where
joint training achieves significantly lower segmentation ac-
curacy. In Sec. G we analyze more in detail the failure cases
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Figure 1. Effect on the rendered depth and semantics of depth supervision and of the modification to the semantic loss. Black pixels in the
ground-truth depth and ground-truth semantics denote respectively missing depth measurement and missing semantic annotation.

of our method and focus specifically also on Scene 5, which
we find to contain several frames with extreme illumination
conditions, which makes it particularly challenging to prop-
erly reconstruct the geometry of certain parts of the scene.

D. Multi-step adaptation

In the following Section, we include in-detail results for
the multi-step adaptation experiments, reporting addition-



Pre-train CoTTA [13] Fine-tuning (GI +ML) Fine-tuning (GI + NL) Fine-tuning (NI + NL) Joint Training

Scene 1 41.1 41.9±0.0 50.6±0.1 50.1±0.6 50.7±0.5 55.5±1.3

Scene 2 35.5 35.6±0.0 33.5±0.1 35.7±0.8 36.6±0.3 39.5±0.8

Scene 3 23.5 23.7±0.0 24.4±0.1 26.9±1.0 27.1±1.2 27.5±1.6

Scene 4 62.8 63.0±0.0 66.1±0.3 63.2±0.6 66.1±0.8 67.7±1.7

Scene 5 49.8 49.8±0.0 51.2±0.1 57.1±1.2 59.9±1.5 46.3±0.3

Scene 6 48.9 48.9±0.0 53.1±0.1 50.2±0.4 49.9±0.4 50.7±0.2

Scene 7 39.7 39.8±0.0 41.4±0.1 40.8±0.6 42.1±0.8 43.8±1.6

Scene 8 31.6 31.7±0.0 36.2±0.2 34.4±0.5 33.9±0.4 38.1±3.5

Scene 9 31.7 31.7±0.0 32.7±0.1 35.5±0.6 34.9±0.8 32.5±0.9

Scene 10 52.5 52.7±0.0 57.8±0.1 57.1±0.6 58.4±0.6 57.4±1.4

Average 41.7 41.9±0.0 44.7±0.1 45.1±0.7 45.9±0.7 45.9±1.3

Table 3. One-step adaptation performance on the training views of each scene. GI and NI denote respectively ground-truth color images
and NeRF-rendered color images. ML and NL indicate adaptation using pseudo-labels formed respectively with the method of [3] and
with our approach. In joint training, we use NeRF-based renderings and pseudo-labels. For each method, we run the experiments for 10
times and report average and standard deviation across the runs.

ally a set of standard metrics used in the continual learning
literature. We further demonstrate the use, enabled by our
method, of images and pseudo-labels rendered from novel
viewpoints in previous scenes for multi-step adaptation. Re-
markably, we find that this modification induces a further
improvement in the retention of knowledge from the previ-
ous scenes.

D.1. Detailed per-step evaluation

Table 5 reports the segmentation performance on the val-
idation views of each scene after each step of adaptation,
both for our method and for the baselines of [13] and [3].
For each method, we run the experiment 3 times and report
main and standard deviation across the runs. The results
complement Tab. 3 in the main paper, confirming in partic-
ular that in all the adaptation steps our method is the most
effective at preserving knowledge on the previous scenes.

ACC Metric [7] A Metric [2] FWT [7] BWT [7]

CoTTA [13] 44.6±0.0 40.9±0.0 -0.2±0.0 -0.1±0.0

Mapping [3] 45.8±0.6 42.1±0.5 -1.1±0.2 -1.0±0.6

Ours (Ipre replay only) 46.8±0.8 43.7±0.6 -1.4±0.7 -1.4±0.7

Ours 47.2±0.5 44.3±0.2 -1.1±0.2 -0.9±0.4

Table 4. Continual learning metrics extracted from Tab. 5.

To facilitate the analysis of the results, in Tab. 4 we
further report a set of metrics commonly used in the con-
tinual learning literature. Our method achieves the best
performance both according to the ACC metric [7] and to
the A metric [2], meaning that it obtains the best average
mIoU across all previously visited scenes both at the final
step and at any arbitrary adaptation step. The baseline of
CoTTA [13] attains the best forward transfer (FWT) [7] and
backward transfer (BWT) [7], which indicate respectively
the influence that previous scenes have on the performance

on future scenes and the influence that adaptation on the cur-
rent scenes has on the performance on the previous scenes
(negative BWT corresponds to catastrophic forgetting). An
important point to notice, however, is that the performance
of CoTTA also does not vary significantly with respect to
the pre-trained model, and in particular does not improve
on average. Among the other methods, our method achieves
the best FWT and BWT, which demonstrates the effective-
ness of our NeRF-based replay buffer in alleviating forget-
ting and improving the generalization performance.

D.2. “Replaying" from novel viewpoints

A key feature enabled by our method is the possibility
of rendering both photorealistic color images and pseudo-
labels from any arbitrary viewpoint inside a reconstructed
scene. Crucially, this can include also novel viewpoints not
seen during deployment and training, which can then be
used for adaptation, at the fixed storage cost given by the
size of the NeRF model parameters. In the following, we
present an experiment demonstrating this idea in the multi-
step adaptation scenario. Using the notation introduced in
the paper, in each step i ∈ {1, . . . , 10}, the semantic seg-
mentation network fθi−1

is adapted on scene Si, and for
each previous scene Sj , 1 ≤ j < i images and pseudo-
labels rendered from viewpoints P̂j are inserted in a ren-
dering buffer and mixed to the data from the current scene.
However, unlike the experiments in the main paper, we do
not enforce that for each scene Sj the viewpoints P̂j used
for the rendering buffer coincide with those used in train-
ing Pj := {P k

j }k∈{1,··· ,|Ij |}, but instead allow novel view-
points to be used, that is, |P̂j\(P̂j ∩Pj)| > 0.

Specifically, in the presented experiment we apply sim-
ple average interpolation of the training poses, and for each
viewpoint P̂

k

j ∈ P̂j we compute its rotation component



Method Step Scene 1 Scene 2 Scene 3 Scene 4 Scene 5 Scene 6 Scene 7 Scene 8 Scene 9 Scene 10 Average Prev. Average

Pre-training − 43.9 41.3 23.0 50.2 40.1 37.6 55.8 27.9 54.9 73.5 – 44.8

CoTTA [13]

1 44.0±0.0 40.9±0.0 22.9±0.0 50.3±0.0 40.1±0.1 37.5±0.0 55.9±0.0 27.6±0.0 54.7±0.0 73.6±0.0 – 44.7±0.0

2 44.0±0.0 40.9±0.0 22.9±0.0 50.3±0.0 40.1±0.0 37.5±0.0 55.9±0.0 27.6±0.0 54.8±0.0 73.6±0.0 44.0±0.0 44.7±0.0

3 43.6±0.1 40.7±0.1 22.7±0.0 50.1±0.1 39.9±0.0 37.5±0.0 56.1±0.0 27.3±0.0 54.6±0.0 73.7±0.0 42.2±0.0 44.6±0.0

4 43.6±0.0 40.5±0.0 22.7±0.0 50.2±0.1 39.9±0.0 37.5±0.0 56.0±0.1 27.2±0.0 54.5±0.0 73.7±0.0 35.6±0.0 44.6±0.0

5 43.7±0.1 40.5±0.0 22.7±0.0 50.2±0.1 40.0±0.0 37.5±0.0 55.9±0.1 27.1±0.0 54.6±0.0 73.7±0.0 39.3±0.0 44.6±0.0

6 43.7±0.0 40.4±0.1 22.7±0.0 50.3±0.1 40.0±0.0 37.5±0.0 55.9±0.1 27.0±0.0 54.5±0.0 73.7±0.0 39.4±0.0 44.6±0.0

7 43.7±0.1 40.4±0.1 22.7±0.1 50.3±0.1 39.9±0.1 37.6±0.1 56.0±0.1 26.9±0.0 54.5±0.0 73.7±0.0 39.1±0.0 44.6±0.0

8 43.7±0.0 40.4±0.1 22.7±0.1 50.3±0.1 39.9±0.1 37.7±0.1 56.0±0.1 26.9±0.0 54.5±0.0 73.7±0.0 41.5±0.0 44.6±0.0

9 43.7±0.0 40.3±0.1 22.7±0.1 50.2±0.1 39.9±0.1 37.7±0.1 56.0±0.1 26.8±0.0 54.5±0.0 73.8±0.0 39.7±0.0 44.6±0.0

10 43.7±0.1 40.2±0.1 22.7±0.1 50.3±0.1 39.9±0.1 37.6±0.0 56.1±0.1 26.8±0.0 54.4±0.1 73.8±0.0 41.3±0.0 44.6±0.0

Mapping [3]

1 46.8±0.4 36.0±1.6 24.2±0.9 48.3±0.9 40.0±0.9 35.3±0.8 55.5±0.4 29.2±2.3 55.7±1.0 73.9±0.2 – 44.5±0.5

2 46.5±0.1 42.1±2.0 23.6±0.9 48.4±1.3 41.3±1.0 35.5±0.7 54.8±1.1 28.3±0.8 56.5±0.9 73.7±0.2 46.5±0.1 45.1±0.2

3 43.0±1.2 42.6±2.8 23.6±0.7 48.5±0.7 37.0±2.1 33.7±0.6 55.5±2.0 26.0±0.8 54.2±1.4 74.1±0.3 42.8±1.0 43.8±0.0

4 45.5±0.3 42.9±2.2 23.5±0.8 50.6±2.6 38.5±0.8 34.1±0.9 57.7±0.3 26.7±1.3 55.8±1.9 73.9±0.2 37.3±0.9 44.9±0.5

5 44.9±0.6 42.9±1.2 23.5±0.7 50.2±2.5 44.0±0.1 34.2±0.7 57.3±0.6 26.7±0.4 54.6±1.8 73.6±0.7 40.4±0.6 45.2±0.1

6 44.8±1.1 43.5±0.6 22.8±0.9 49.6±2.4 43.9±0.4 35.8±0.5 57.9±1.3 25.7±0.0 56.1±1.7 73.3±0.6 40.9±0.7 45.3±0.3

7 43.5±1.6 43.7±0.8 22.9±1.1 50.4±2.7 43.4±0.6 35.6±0.3 56.7±1.3 25.7±1.7 55.5±2.6 73.7±0.4 39.9±1.1 45.1±0.6

8 42.0±0.7 43.5±1.2 23.0±0.7 50.3±2.5 43.8±0.1 35.9±1.5 57.1±0.1 26.5±1.8 56.1±2.9 73.9±0.5 42.2±0.5 45.2±0.2

9 43.0±0.9 43.9±1.2 22.2±0.3 49.8±2.4 43.6±0.2 35.2±0.7 56.8±0.2 25.6±1.2 68.3±1.4 74.1±1.2 40.0±0.4 46.2±0.2

10 42.5±0.7 43.5±1.3 22.5±0.3 49.7±2.5 43.6±0.2 35.6±1.1 55.6±1.0 26.2±1.4 65.8±4.0 72.7±1.0 42.8±0.7 45.8±0.6

Ours (Ipre replay only)

1 53.3±0.7 35.4±1.8 24.7±0.1 49.7±1.6 37.4±1.0 32.9±0.2 55.6±1.0 31.9±1.1 55.1±1.2 74.1±0.7 – 45.0±0.3

2 52.3±0.3 48.0±2.4 22.2±0.4 50.0±0.1 43.4±0.9 34.4±1.4 50.3±0.8 29.2±1.9 63.4±3.5 73.2±1.3 52.3±0.3 46.7±0.5

3 51.8±1.9 43.2±1.6 20.5±0.1 48.6±0.9 40.0±2.1 33.1±1.9 55.3±0.6 27.7±1.5 57.8±4.7 73.7±0.6 47.5±1.1 45.2±0.6

4 52.9±1.3 41.9±2.3 21.1±0.8 49.0±1.5 37.9±0.9 34.3±1.7 54.5±0.6 32.3±1.1 55.4±0.7 72.9±2.0 38.6±1.1 45.2±0.5

5 51.5±0.8 41.7±1.0 21.2±0.9 48.8±1.2 43.4±0.0 35.2±0.5 56.4±1.0 29.3±0.1 53.2±2.4 72.2±1.0 40.8±0.7 45.3±0.5

6 53.4±1.1 44.6±1.2 20.5±0.5 49.2±1.5 44.4±0.6 39.0±1.4 51.3±5.3 30.7±2.4 57.3±2.3 71.9±1.6 42.4±0.3 46.3±0.7

7 52.1±0.5 45.5±2.5 21.1±0.3 49.7±1.1 44.0±0.4 36.6±1.8 62.1±6.2 31.1±0.7 60.2±2.5 74.8±0.5 41.5±0.7 47.7±0.1

8 50.7±2.1 47.1±2.5 21.0±0.7 49.3±1.6 44.3±1.7 38.2±1.5 59.6±7.2 26.7±3.0 57.0±0.9 74.2±0.4 44.3±1.4 46.8±1.1

9 51.4±1.4 45.6±2.5 20.0±0.8 49.3±1.4 45.8±1.6 36.6±1.7 56.0±4.0 26.6±3.1 65.7±5.6 73.1±0.5 41.4±0.6 47.0±0.9

10 48.7±1.5 44.5±3.9 21.1±0.3 50.1±1.5 44.2±1.0 35.5±1.9 56.8±3.5 28.3±3.2 65.8±5.4 73.0±0.5 43.9±0.9 46.8±0.8

Ours

1 53.7±1.3 36.6±0.5 24.5±0.9 49.7±0.8 39.7±0.9 34.0±2.4 56.5±1.5 31.7±1.3 56.4±0.5 74.8±0.5 – 45.7±0.2

2 53.2±0.9 46.3±0.7 23.2±0.5 48.5±1.1 41.9±0.9 33.7±1.5 56.4±1.7 30.4±1.2 59.1±0.5 74.1±0.5 53.2±0.9 46.7±0.2

3 52.3±1.1 44.0±0.6 24.3±2.0 49.2±0.5 38.5±2.8 32.6±0.4 53.2±0.9 28.0±0.3 59.8±5.7 73.8±0.8 48.2±0.8 45.6±0.3

4 53.5±0.6 46.3±1.4 24.7±2.9 49.1±0.9 37.3±3.4 34.8±2.5 54.8±2.0 29.8±1.2 59.3±4.0 72.9±0.4 41.5±0.8 46.3±0.6

5 53.0±1.1 44.4±0.8 24.8±2.9 49.1±0.7 43.7±0.3 32.7±1.7 56.0±1.8 29.3±1.3 59.0±2.3 73.2±0.5 42.8±0.8 46.5±0.2

6 53.0±0.9 45.0±0.9 24.8±2.5 49.0±0.2 44.1±0.5 40.4±1.5 54.1±1.8 29.5±2.1 60.0±1.9 72.8±0.4 43.2±0.8 47.3±0.7

7 51.6±0.4 44.7±0.5 23.8±2.6 49.6±0.5 44.1±0.3 39.2±2.0 55.8±0.8 28.6±1.8 62.1±6.4 73.7±0.3 42.2±0.8 47.3±0.8

8 50.9±0.3 46.0±0.4 24.3±2.1 49.5±0.2 44.1±0.5 38.9±1.2 54.9±2.1 26.2±0.9 59.5±2.4 74.2±0.2 44.1±0.2 46.9±0.2

9 51.6±0.3 46.4±1.5 23.6±2.1 49.0±0.3 44.1±0.3 37.4±1.4 55.4±2.8 25.9±0.4 68.9±3.2 73.2±0.1 41.7±0.2 47.6±0.2

10 50.8±0.4 44.6±1.1 23.7±2.1 49.4±0.1 43.8±0.5 37.0±1.9 54.8±1.8 26.1±0.7 69.6±1.0 72.5±1.6 44.3±0.3 47.2±0.5

Table 5. Detail of the multi-step performance evaluated on the validation set of each scene. At Step i, the performance of the adapted
network fθi on all the scenes is reported (for scenes Sj , j > i the values are greyed out). Pre-training denotes the performance of the
pre-trained network fθ0 . For each Step i, we highlight: in bold, the performance of the method which achieves highest mIoU on the
current scene Si, which is indicative of the adaptation performance; in underlined, for each scene Sj , 1 ≤ j ≤ i − 1 the performance
of the method which achieves highest mIoU on Sj , which denotes the ability to preserve previous knowledge; in double-underlined, the
performance of the method which achieves highest average mIoU on the previous scenes Sj , 1 ≤ j < i, which also provides an indication
of the ability to counteract forgetting. For each method, the results are averaged over 3 runs. All Ours are with joint training.

through spherical linear interpolation [11] of the rotation
components of P k

j and P k+1
j , and its translation compo-

nent as the average of the translation components of P k
j

and P k+1
j . An example visualization of the obtained poses

can be found in Fig. 2. The results of the experiment are
shown in Tab. 6, which extends on Tab. 3 from the main
paper. All the methods are run for 3 times and mean and
standard deviation across the runs are reported.

As can be observed from the Adapt results, replaying
from novel viewpoints achieves similar adaptation perfor-
mance on the current scene as the other baselines of Ours,
but with a slightly larger variance.

The crucial observation, however, is that this strategy
outperforms all the other baselines in terms of retention of
previous knowledge (Previous) in almost all the steps, and
improves on our method with replay of the training view-
points on average by 0.7% mIoU. This improvement can
be attributed to the novel viewpoints effectively acting as a
positive augmentation mechanism and inducing an increase
of knowledge on the previous scenes. In other words, rather
than simply counteracting forgetting, the model de facto
keeps learning on the previous scenes, through the use of
newly generated data points.

We believe this opens up interesting avenues for replay-



Figure 2. Visualization of the novel viewpoints used for adaptation in Sec. D.2 for two example scenes (Scene 5, left side, and Scene 6,
right side). The viewpoints Pj used for training and the novel viewpoints P̂j used for “replay” are shown in green and red, respectively.

Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 Step 7 Step 8 Step 9 Step 10 Average

Pre-train 43.9 41.3 23.0 50.2 40.1 37.6 55.8 27.9 54.9 73.5 44.8

Adapt

CoTTA [13] 44.0±0.0 40.9±0.0 22.7±0.0 50.2±0.1 40.0±0.0 37.5±0.0 56.0±0.1 26.9±0.0 54.5±0.0 73.8±0.0 44.7±0.0

Mapping [3] 46.8±0.4 42.1±2.0 23.6±0.7 50.6±2.6 44.0±0.1 35.8±0.5 56.7±1.3 26.5±1.8 68.3±1.4 72.7±1.0 46.7±1.2

Ours (Ipre replay only) 53.3±0.7 48.0±2.4 20.5±0.1 49.0±1.5 43.4±0.0 39.0±1.4 62.1±6.2 26.7±3.0 65.7±5.6 73.0±0.5 48.1±2.1

Ours 53.7±1.3 46.3±0.7 24.3±2.0 49.1±0.9 43.7±0.3 40.4±1.5 55.8±0.8 26.2±0.9 68.9±3.2 72.5±1.6 48.1±1.3

Ours (novel viewpoints) 53.8±0.4 46.7±2.1 23.2±3.3 49.0±1.0 42.9±0.4 40.1±0.7 58.0±8.5 23.2±2.0 66.7±7.1 71.5±2.2 47.5±2.8

Previous

CoTTA [13] − 44.0±0.0 42.2±0.0 35.6±0.0 39.3±0.0 39.4±0.0 39.1±0.0 41.5±0.0 39.7±0.0 41.3±0.0 40.2±0.0

Mapping [3] − 46.5±0.1 42.8±1.0 37.3±0.9 40.4±0.6 40.9±0.7 39.9±1.1 42.2±0.5 40.0±0.4 42.8±0.7 41.4±0.7

Ours (Ipre replay only) − 52.3±0.3 47.5±1.1 38.6±1.1 40.8±0.7 42.4±0.3 41.5±0.7 44.3±1.4 41.4±0.6 43.9±0.9 43.6±0.8

Ours − 53.2±0.9 48.2±0.8 41.5±0.8 42.8±0.8 43.2±0.8 42.2±0.8 44.1±0.2 41.7±0.2 44.3±0.3 44.6±0.6

Ours (novel viewpoints) − 54.8±0.9 50.4±2.1 41.8±0.9 43.8±0.8 43.4±0.9 42.7±1.0 44.8±0.9 41.6±0.7 44.3±0.2 45.3±0.9

Table 6. Multi-step performance evaluated on the validation set of each scene. At Step i, Pre-train and Adapt denote respectively
the performance of the pre-trained network fθ0 and of the adapted network fθi on the current scene Si, while Previous represents the
average performance of fθi on scenes S1 to Si−1. All Ours are with joint training. Our baseline with novel viewpoints used for replay
(Ours (novel viewpoints)) is able to consistently retain knowledge better than the other methods.

based adaptation. In particular, more sophisticated strate-
gies to select the viewpoints from which to render could be
designed, and further increase the knowledge retention on
the previous scenes, without reducing the performance on
the current scene.

E. Memory footprint

In the following, we report the memory footprint of the
different methods, denoting with N the number of previous
scenes at a given adaptation step.

For each previous scene, our method stores the
corresponding NeRF model, which has a size of
50.0MB with Instant-NGP [8, 12] and of 4.9MB with
Semantic-NeRF [14]. This results in either (N × 50.0)MB
or (N × 4.9)MB of total data being stored in the long-term
memory. Note however that during adaptation we only ren-
der data from a small subset of views to populate the re-
play buffer, hence the effective size of the data from the
previous scenes that need to be stored in running memory
during adaptation is 14.0MB. Additionally, we save one
randomly selected data point every 10 samples in the pre-
training dataset, taking up additional 64.6MB of space.

Similarly to us, the method of [3] requires 14.0MB
for the replay buffer and 64.6MB for the replay from the
pre-training dataset, but stores voxel-based maps instead of
NeRF models, taking up 71.8MB for each scene. Impor-
tantly, since the voxel-based maps only include semantic
information and cannot be used to render color images, the
method of [3] additionally needs to save color images for
the training viewpoints. In the 10 scenes that we used for
our experiments, their size amounted on average to approxi-
mately 30.0MB per scene, resulting in a total storage space
of around (N×101.8MB) required for the previous scenes.

In each step, in addition to the model that gets adapted on
the current scene, CoTTA [13] requires storing the teacher
model from which pseudo-labels for online adaptation are
generated, and an additional version of the original, pre-
trained model, to preserve source knowledge. The parame-
ters of the DeepLab network used in our experiments have
a size of 224.3MB, resulting in a total of (2×224.3)MB =
448.6MB of data that need to be stored.

A comparison of the memory footprint of the different
methods as a function of the number of previous scenes can
be found in tabular form in Tab. 7 and in graphical form in
Fig. 3. For our method and for [3], we include in the total



Previous scenes Source knowledge Total

Offline Online

Ours Instant-NGP [8, 12] (N × 49.9)MB⋆

14.0MB 64.6MB
(78.6 +N × 49.9)MB

Semantic-NeRF [14] (N × 4.9)MB⋆ (78.6 +N × 4.9)MB

CoTTA [13] – 224.3MB† 224.3MB† 448.6MB
Mapping [3] ∼ (N × 101.8)MB⋆⋆ 14.0MB 64.6MB ∼ (78.6 +N × 101.8)MB

Table 7. Comparison of the memory footprint of different methods. N denotes the number of previous scenes. ⋆ The numbers refer to the
storage cost required by the NeRF models. For actual adaptation (Online), only renderings from a subset of views are used, and inserted in
a memory buffer of size 14.0MB. ⋆⋆ The numbers refer to the storage cost required by each voxel-based map (71.8MB), plus the explicit
training views that need to be stored for each scene, which amount to an average of ∼ 30.0MB per scene. Similarly to Ours, for actual
adaptation, a memory buffer of size 14.0MB is used. † CoTTA requires storing a teacher model for online adaptation, and an additional
version of the original, pre-trained model, to preserve source knowledge.

Figure 3. Memory footprint of the different methods as a function
of the number of the previous scenes. Please refer to the text and to
Tab. 7 for a detailed explanation. We use solid lines for the number
of scenes used in our experiments.

size both the data stored offline and the one inserted in the
replay buffer.

Note that using the lighter implementation of
Semantic-NeRF [14], the comparison is in our favour
up to 75 scenes, and up to 91 scenes when only considering
the size of the NeRF models.

F. Further visualizations

In Fig. 4 we provide examples of the pseudo-labels pro-
duced on the training views by our method and by the dif-
ferent baselines. As previously observed by the authors
of [3], the mapping-based pseudo-labels suffer from arti-
facts induced by the discrete voxel-based representation.
Thanks to the continuous representation enabled by the
coordinate-based multi-layer perceptrons, our NeRF-based
pseudo-labels produce instead smoother and sharper seg-
mentations. However, they occasionally fail to assign a uni-
form class label to each object in the scene (cf. last row in
Fig. 4). This phenomenon, which we also observe in the
mapping-based pseudo-labels, can be attributed to the in-

consistent per-frame predictions of DeepLab, that cannot be
fully filtered-out by the 3D fusion mechanism. By jointly
training the per-frame segmentation network and the 3D-
aware Semantic-NeRF, we are however able to effectively
reduce the extent of this phenomenon, producing more uni-
form pseudo-labels.

Figure 5 further shows examples of the predictions re-
turned by the segmentation network on the validation views
after being adapted using the different methods. In accor-
dance with what observed in the quantitative evaluations,
while being able to preserve knowledge, CoTTA achieves
limited improvements with respect to the initial perfor-
mance. As a consequence, the predicted labels match very
closely those of the pre-trained network. Fusing the pre-
dictions from multiple viewpoints into a 3D representation
allows both the baseline of [3] and our method to reduce
the amount of artifacts due to misclassifications in the per-
frame predictions. The positive effect of this 3D fusion
can be successfully transferred to the segmentation network
through adaptation, as visible by comparing the predictions
in the three rightmost columns of Fig. 5 to those of the pre-
trained network (third column from the left in Fig. 5). We
observe that fine-tuning with NeRF-based pseudo-labels in-
stead of voxel-based pseudo-labels often results in a more
consistent class assignment to different pixels of the same
instance. This effect is amplified when using joint training,
which often produces more accurate pseudo-labels com-
pared to fine-tuning.

G. Limitations
Since our approach relies on the assumption that a good

reconstruction of the scene can be obtained, we find that
our method achieves suboptimal performance when this as-
sumption is not fulfilled. This is the case for instance for
Scene 5 (cf. first and second row in Fig. 6), in which a
large number of frames are overexposed and the ground-
truth depth measurements are missing for a large part of
the frame. Specular effects (cf. third row in Fig. 6) can
further break the assumptions required by the volume ren-
dering formulation of NeRF. Related to these problems is
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Figure 4. Comparison of example pseudo-labels obtained on the training views by the different methods.
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Figure 5. Comparison of the predictions of the semantic segmentation network on the validation views, when adapted using the different
methods.
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Figure 6. Examples of failure cases. First row: Poor lighting, incomplete ground-truth depth measurements, and noisy initial predictions
result in both the rendered pseudo-labels and the predictions from the adapted network assigning uniform labels to large parts of the scene
and failing to correctly segment fine details in the scene. Second row: Motion blur, diffusion lighting, shadows, and insufficient number of
observations can also degrade the reconstruction quality and make the label propagate to the wrong objects. Third row: Specular effects
can break the assumptions of the volume rendering formulation of NeRF; large flat areas with small variations in depth can be hard to
reconstruct, resulting in smoothed-out, uniform labels for the background.



also the quality of the initial predictions of the segmentation
network: Particularly when lighting conditions are poor, we
observe that the predictions of the pre-trained segmentation
network are very noisy (see, e.g., first row in Fig. 6). The
combination of these factors results in the pseudo-labels
produced by our method assigning a uniform label to a large
part of the scene and failing to correctly segment smaller
details.

We observe that these degenerate cases can have a par-
ticularly large influence on the quality of the pseudo-labels
and of the network predictions when jointly training the
segmentation network and NeRF. We hypothesize that this
might be due to the 2D-3D knowledge transfer enabled by
our method inducing a negative feedback loop when poor
segmentation predictions are combined with suboptimal re-
constructed geometry. A possible way to tackle this prob-
lem in future work is by making use of regularization tech-
niques, for instance by limiting large deviations of the pre-
dictions across adaptation steps, to avoid collapse, or by
minimizing the entropy of the semantic predictions of both
NeRF and the segmentation network.

A general limitation of our method is that it assumes
scenes to be static. Extending the pipeline to han-
dle dynamic scenes through the use of temporally-aware
NeRFs [9, 10] is an interesting direction for future work.
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