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Figure 7. Qualitative analysis on Caltech [3] between our proposed VLPD and the baseline CSP [4]. Green bounding boxes are correct
detections, red are wrong detections, and dashed blue are missing detections. Semantic classes of explicit contexts are obtained from our
proposed VLS and colored following [1], e.g., “human” is red, “traffic sign” is yellow and “car” is blue.

6. Qualitative Analysis
In this section, we provide more qualitative analysis of

our proposed Vision-Language semantic self-supervision
for Pedestrian Detection (VLPD) on challenging bench-
marks Caltech [3] and CityPersons [9]. Various forms of vi-
sualizations are illustrated including detection results, con-
texts by our VLS and t-SNE of prototypes by our PSC.

6.1. Comparisons on Caltech Benchmark

In addition to our main paper, more qualitative analysis
on Caltech [3] benchmark is provided in Figure 7 and 8 of

∗ Equal Contribution. † Corresponding Author.

this section. Note that different colors in Figure 9 indicate
the semantic classes of explicit contexts from our proposed
Vision-Language Semantic (VLS) segmentation.

As illustrated in Figure 7, the 1st and 2nd columns
demonstrate typical crowded scenes. For example, the
dashed blue boxes in the 1st rows of them are missing
pedestrians by the baseline CSP [4] due to heavy occlusion.
Highlighted by the red color for “human” class by our pro-
posed VLS, these regions are focused on by our proposed
VLPD and thus handled properly for accurate detections.

In the 3rd and 4th columns, the missing pedestrians are
occluded by non-human objects, whose appearances are
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Figure 8. Qualitative analysis on Caltech [3] between our proposed VLPD and the baseline CSP [4]. Green bounding boxes are correct
detections, red are wrong detections, and dashed blue are missing detections. Semantic classes of explicit contexts are obtained from our
proposed VLS and colored following [1], e.g., “human” is red, “traffic sign” is yellow and “car” is blue.

Figure 9. Different colors indicate the contextual classes seg-
mented by our proposed VLS, based on the setting of CityScapes
[1] with some modifications for highlighting the pedestrians.

more unusual than others. For instance, in the 3rd column,
explicit contexts by our VLS carefully split the visible and
invisible parts of the pedestrian occluded by the traffic signs
by red and yellow colors. Similarly, the 4th column shows
the pedestrian under the tree is divided by our VLS into red
and blue colors for visible and occluded parts from the car.
In the 1st column of Figure 8, two small pedestrians are
missing, while our VLS highlights them via red color.

Besides, diversified human-like objects are confusing in
the 1st column of Figure 7 and last 3 ones of Figure 8. Our
proposed VLS marks them carefully with colors which rep-
resent non-human objects, e.g., yellow for “traffic sign”.

Although the explicit contexts of semantic classes from
our VLS are label-free and coarse-grained, not only human-
like objects are classified, but also most ground truth pedes-
trians are correctly predicted. Moreover, under the fully-
supervised detection training in Eq. 5 of the main paper, the
Detection Head learns to detect with only useful clues.

With these explicit contexts, our proposed Prototypical
Semantic Contrastive (PSC) learning supervises the detec-
tor to discriminate the pedestrians and contexts by con-
trastive self-supervision. Therefore, our proposed VLPD
strikes the balance between keeping more salient regions of
pedestrians as possible and avoiding the non-human objects.

In conclusion, our proposed VLPD tackles the chal-
lenges of both confusing non-human objects and unusual
small-scale or occluded pedestrians which hinders the
performance gains of previous methods, equipped with
the powerful vision-language semantic self-supervisions of
VLS and PSC without any extra laborious annotations.

6.2. Comparisons on CityPersons Benchmark

In this section, we provide qualitative analysis on another
challenging benchmark CityPersons [9]. Note that its eval-
uation protocol is different from Caltech [3], where sitting
persons, bicycle or motorcycle riders are not pedestrians.

Figure 10 mainly illustrates the different wrong detec-

2



CSP
V
LPD

(O
urs)

by
V
LS
(O
urs)

Figure 10. Qualitative analysis on CityPersons [9] between our proposed VLPD and the baseline CSP [4]. Green bounding boxes are
correct detections, red are wrong detections, and dashed blue are missing detections. Semantic classes of explicit contexts are obtained
from our proposed VLS and colored following [1], e.g., “human” is red, “traffic sign” is yellow and “car” is blue.

tions caused by non-human objects via the baseline CSP
[4]. For example, some parts of buildings in the middle
of images inside the 1st column are mistakenly detected as
“pedestrian” in a red bounding box. Similarly, trees by the
road and distant bicycles in the 2nd and 3rd columns of Fig-
ure 10 mislead the context-agnostic baseline. All of them
are classified into non-human classes as white, green and
orange colors by our proposed VLS, respectively.

In crowded scenes of the 1st and 2nd columns of Figure
12, the baseline CSP [4] mistakes some parts of pedestrians
as the whole one or ignores some occluded pedestrians. In
the 3rd column, CSP not only misses the heavily occluded
pedestrian behind the buildings by the right side, but also
detects a wrong pedestrian near the roadside.

Under these complex circumstances, our proposed
VLPD utilizes explicit extra-annotation-free contexts via
our VLS and self-supervised discriminative representations
of pedestrians and non-human these contexts via our PSC.
Then, the regions of pedestrians are especially concentrated
and human-like objects are avoided. Consequently, detec-
tion results of our VLPD are more robust to small or oc-
cluded pedestrians and human-like objects.

Generally speaking, our proposed VLPD are evaluated
by diversified challenging scenarios on both benchmarks
Caltech [3] and CityPersons [9], including human-like con-
fusing objects and hard small or occluded pedestrians, via
the first vision-language extra-annotation-free method
for pedestrian detection to our best knowledge.

Figure 11. Visualization on how VLPD uses contexts of VLS (left)
for detection (right). Yellow circle is ignored fake “human”. Red
is detected without VLS like CSP. Blue circle is rescued by VLS
from CSP (Please refer to Col. 2 of Figure 12 and zoom in). VLPD
also notices some human-like traffic signs and avoids them.

6.3. Visualization of Context Usage for Detection

As stated in the Figure 3 of the main paper, both basic
detection capability of CSP and our CLIP-based VLS con-
tribute the final detection. Hence, our VLPD learns from
joint LDet and LV LS to choose helpful parts of VLS.

In Figure 11, pedestrian in red circle is detected like CSP
without VLS clues, and fake red “human” regions in yellow
circle are ignored by VLPD. Meanwhile, our VLPD keeps
the capability from CSP and thus detects occluded pedes-
trian in red circle without VLS. Person with low-IoU VLS
in Col. 3 of Figure 10 is similar as well. Furthermore, con-
texts via VLS empowers our VLPD to: 1) avoid human-like
objects, e.g., red box in Col. 3 of Figure 12 is removed by
orange “bicycle” regions; 2) highlight hard pedestrians like
blue circle of Figure 11 from Figure 12.
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Figure 12. Qualitative analysis on CityPersons [9] between our proposed VLPD and the baseline CSP [4]. Green bounding boxes are
correct detections, red are wrong detections, and dashed blue are missing detections. Semantic classes of explicit contexts are obtained
from our proposed VLS and colored following [1], e.g., “human” is red, “traffic sign” is yellow and “car” is blue.

Push away

Figure 13. t-SNE visualization of prototypes by PSC (=VLPD) or
not (CSP w/ CLIP+VLS) on a random image from CityPersons.

6.4. t-SNE Visualization of Prototypes

As shown in Figure 13, a push-away of positive proto-
types for pedestrians from various negative ones is observed
after our PSC is applied. We select a random image from
CityPersons [9] dataset, and then obtain the “Detection Fea-
ture” E and Ŝ from VLPD to calculate the prototypes.

7. Quantitative Analysis

In this section, further quantitative analysis are pro-
vided to evaluate the two key components of our proposed
Vision-Language semantic self-supervision for Pedestrian
Detection (VLPD): Vision-Language Semantic (VLS) seg-
mentation and Prototypical Semantic Contrastive (PSC)
learning, including network achitectures, statistics, hyper-
parameters, and learning schemes.

Table 8. Different network architectures about S̄ of VLS.

Method Reasonable Small HO

CSP w/ CLIP 10.13 12.59 38.97

+VLS 9.70 12.57 36.50
+VLS+PSC=VLPD 9.41 10.93 34.88

+VLS w/o C & U 9.72 12.67 36.35
+VLS w/o C & U+PSC 10.16 12.30 38.31

7.1. Different Network Architectures of VLS

As illustrated by the Figure 3 of our main paper, we
follow the network architecture design of DenseCLIP [6],
where the predicted S̄ via VLS are up-sampled (“U”) into
Ṡ, concatenated (“C”) with Detection Feature E, and then
fed into Detection Head for an explicit contextual reference.

Although such a design is not individually evaluated via
ablation study in [6], we make thoroughly quantitative anal-
ysis in Table 8. Without the reference of Ṡ as “+VLS w/o
C & U”, Detection Feature E is the only input of Detec-
tion Head, thus the pixel-wise explicit classes from Ṡ are
unavailable. Detection Head is only aware that some pix-
els of E are concentrated by contrastive learning of PSC,
but their explicit classes (human or non-human objects, and
more likely to be human-like objects or not) are unknown.

Hence, the Ṡ is evaluated to be significant for both our
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Table 9. Different selection of λ2 for PSC on Caltech dataset.

Method Reasonable All Heavy

(CSP w/ CLIP) + VLS 2.80 54.34 41.26

+ PSC (10−3) 3.27 54.47 41.70
+ PSC (10−4, =VLPD) 2.27 52.37 37.12

+ PSC (10−5) 3.17 53.43 40.75

3.7E+8 1.3E+7
1.8E+6

1.2E+6 9.4E+5 6.1E+5

car bicycle truck bus motorcycle train

Statistics of the Vehicle Class Frequency

Figure 14. Frequencies among vehicle classes via not only count-
ing pixels but also re-weighting by image-wise occurrence times.

proposed VLS and PSC to cooperate with each other in our
proposed VLPD for the best performance.

7.2. Statistics for Compacted Class Policy of VLS

Due to the excessive variance inside the “vehicle” class,
performance is decreased as “Full Compacted” in Table 3 of
the main paper. Therefore, frequencies are obtained based
on pixel-wise annotations of CityScapes for the images
shared by CityPersons [9]. The frequency Fc is computed
via not only pixel-wise counting Kc but also reweighting by
image-wise occurrence times Tc, where each class c ∈ C.

Therefore, as shown in Figure 14, we observe a signifi-
cant gap between the head and tail classes. In order to strike
a balance between maintaining the variance and eliminating
the low-frequent tail classes, we choose “motorcycle” and
“train” as omitted classes by a threshold F ∗

c = 106.
Intuitively, once the instances of these classes occur in-

side the input images, they can also be predicted as other
classes with similar appearance like “bicycle”, “bus” or
“truck” via the cross-modal mapping in our VLS. Hence,
this refined policy of VLS lead to better performances in
Table 2 and 3 of the main paper.

7.3. Model Capacity Compared with Baseline

Since most state-of-the-art methods do not publish their
results, only our VLPD and baseline CSP can be compared:
46.3M vs 40.0M, 180.3G MACs vs 173.5G MACs. Extra
6M parameters are to predict contextual score maps of VLS.
Please note that the linguistic vectors in Figure 3 of the main
paper are fixed, so text encoder is not for inference.

7.4. Loss Weight Selection of PSC

Due to the characteristics of contrastive learning, LPSC

of PSC learns the features merely under a weak constraint
that pixel-wise features of pedestrians are pulled close to

Table 10. Different selection of λ2 for PSC on CityPersons dataset.

Method Reasonable Small HO

(CSP w/ CLIP) + VLS 9.70 12.57 36.50

+ PSC (10−2) 10.10 12.88 35.95
+ PSC (10−3, =VLPD) 9.41 10.93 34.88

+ PSC (10−4) 9.79 13.40 36.09

Table 11. Different contrastive learning for our proposed PSC.

Method Reasonable Small HO

VLPD (w/ PSC, ours) 9.41 10.93 34.88

P+ (G) → P h+ (VLS) 10.07 12.28 38.23
Each Ej → P+ 10.57 12.87 39.81

the positive prototype and pushed away from the negative
ones. Differently, LV LS still has pseudo labels as a stronger
constraint, and LDet is fully-supervised and thus similar.

Consequently, how far to locate the pedestrian features
inside their feature space might be either over-fitted or
under-fitted, if the loss weight λ2 of LPSC in Eq. 5 from
the main paper are defined improperly. Here, experiments
of the loss weight λ2 are conducted on both benchmarks,
i.e., Caltech [3] and CityPersons [9], respectively.

In Table 9, both the λ2 = 10−3 and 10−5 worsen the
performance of all the subsets on Caltech. Although other
two λ2 improve the HO on CityPersons in Table 10, the best
results on all the subsets are still achieved by λ2 = 10−3.
Therefore, we chose λ2 = 10−4 for Caltech and 10−3 for
CityPersons, respectively.

7.5. Different Contrastive Learning of PSC

In addition to the Table 4 of our main paper, we fur-
ther investigate the design of contrastive learning of our
proposed PSC, including different positive prototypes and
prototype-to-prototype learning.

To evaluate different positive prototypes, 2D Gaussians
of pedestrian positions G is replaced by the score map Ŝh of
contextual class “Human” denoted as “h”. Since this class
is merely used to avoid that the pixels of pedestrians are
mistaken for other classes, Ŝh is obtained via more coarse-
grained self-supervision of VLS like Figure 7, 8, 10 and 12,
where the positive prototype is denoted as P h+. In Table
11, “P+ (G) → P h+ (VLS)” leads to performance loss by
Ŝh which misleads the feature learning of pedestrians.

Furthermore, we evaluate a full-prototype version of
contrastive learning, which only prototype P+ is super-
vised like [8, 11], rather than pixel-wise features Ej . Con-
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Table 12. Different learning schemes of the visual encoder, i.e.,
self-supervision of CLIP [5] or re-training of ImageNet (IN) [2].

Method Reasonable Small HO

VLPD 9.41 10.93 34.88
VLPD w/ re-train IN [2] 11.30 15.67 42.47

sequently, the loss function LPSC is modified as:

LPSC = − log
exp(1/τ)

exp(1/τ) +
∑

c,b exp(P
+ · P c−

b /τ)
, (6)

where P+ ·P+ = 1 and self-normalization, e.g, P+/∥P+∥,
is omitted. As illustrated in Table 11, Eq. 6 with only P+

cannot directly keep the variance among the pixel-wise Ej ,
which also causes the declined performances.

7.6. Different Learning Schemes of Visual Encoder

Following [6], we initialize the visual encoder from
CLIP [5] to keep the cross-modal mapping from vision-
language pretraining. Such a learning scheme is self-
supervision, because the CLIP visual encoder is used for
both training and labeling without any extra labels.

Instead, re-training the encoder based on ImageNet [2]
via the CLIP one is evaluated to be sub-optimal by different
results in Table 1 and 5 from [6]. Furthermore, the experi-
ments are also conducted on our proposed VLPD.

As illustrated in Table 12, since the ImageNet visual
encoder “w/ re-train IN” has not learned any cross-modal
mapping before, it is difficult to use down-stream re-
training on pedestrian detection tasks by our proposed VLS
to obtain an equivalently powerful capability of cross-modal
mapping from the up-stream vision-language pretraining.

8. Discussions on Limitations
Our proposed VLPD is designed to enhance urban

pedestrian detection by the awareness of contexts based
on self-supervision, which is featured with both domain-
specific characteristics and coarse-grained pseudo labels.
Hence, there are some limitations in its application.

On the one hand, although the semantic classes of con-
textual objects are mostly shared between both benchmarks
for urban scenes, i.e., Caltech [3] and CityPersons [9], the
vocabulary of contextual classes limits the usages for more
generalized purposes. For instance, crowded or wide-scene
benchmarks CrowdHuman [7] or WiderPerson [10] com-
prise more out-door and in-door circumstances, which re-
quire a larger, more open and adaptive vocabulary than our
proposed one for merely urban contexts.

On the other hand, the self-supervised semantic seg-
mentation for contextual classes via our proposed VLS is

coarse-grained, as is shown in the qualitative analysis be-
fore. Although it decreases the heavy burden of laborious
manual annotations by cross-modal mapping from vision-
language CLIP [5] model, the noises in the pseudo labels
still affect the accuracy of context modeling. In our opin-
ions, a few shots of manual annotations (e.g., 10∼50 anno-
tated images) as semi-supervision might help to solve this
problem. Hence, coarse-grained pseudo labels also limit the
performance of our proposed method.

In conclusion, domain characteristics of urban pedestrian
detection and coarse-grained pseudo labels are the major
limitations of our proposed method, and they also provide
more potentials for the future works.
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