
A1. Details of the spatio-temporal fusion block

We design a fusion block specifically for spatio-temporal
applications, namely Spatio-Temporal Attention Module
(STAM), as discussed in Sec. 3.1. STAM is based on the
attention mechanism inspired by [48]. Consider the con-
catenation of the propagated previous feature z′t−1 and the
current feature zt as z′(t−1,t) ∈ RT×C×H×W , the STAM
process can be written as:

z(t−1,t) = {[Aspa[Atem(z′(t−1,t))⊗ z
′
(t−1,t)]

⊗ [Atem(z′(t−1,t))⊗ z
′
(t−1,t)]} ⊕ z

′
(t−1,t),

(5)

where Atem is temporal attension, Aspa is spatial atten-
sion, ⊗ denotes element-wise multiplication, and ⊕ denotes
element-wise addition.
Temporal attention. The proposed temporal attention
mechanism learns to choose informative temporal elements
along each pixel’s temporal dimension in the spatio-temporal
space. The temporal attention Atem ∈ RT×1×1×1 is per-
formed as:

Atem(z) = σ(FC(AvgPool(z)) + FC(MaxPool(z))),
(6)

where σ is the sigmoid function, and FC denotes a fully
connected layer.
Spatial attention. The spatial attention mechanism chooses
informative pixels along the spatial dimension in the spatio-
temporal space. The spatial attention Aspa ∈ R1×1×H×W

is performed as:

Aspa(z) = σ(Conv(Concat[AvgPool(z),MaxPool(z)])),
(7)

where Concat denotes the concatenation operation, and
Conv denotes a convolutional layer.
Remark. The main contribution of this paper is the STPL
framework. In Table 4, we can see that STPL can outperform
all the existing methods even with the very simple Concate-
nation fusion, showing its flexibility. We propose STAM to
show that STPL can further benefit from a more advanced
fusion module.

A2. Temporal consistency

We quantitatively compare the temporal consistency of
different objective functions. The temporal consistency is
derived from the overlap between the predicted segmenta-
tion maps of successive frames. We compute the percentage
of the overlapping pixels. As shown in Table 5, STPL per-
forms the best, indicating that the proposed spatio-temporal
method significantly improves temporal consistency. This
quantitative result is consistent with the qualitative results
shown in Figure 5.

Table 5. Temporal consistency of different objective functions on
VIPER [36] → Cityscapes-Seq [7].

Method / Objective function Consistency (%)

Source-only 72.93

Temporal-only CL (Ltem) 75.84 (+2.91)
Spatial-only CL (Lspa) 77.68 (+4.75)
Naı̈ve T+S CL (Ltem + Lspa) 80.91 (+7.89)

STPL (Ours; Lstpl) 82.14 (+9.21)

Figure 8. The t-SNE visualization [42] of the feature space learned
for VIPER [36] → Cityscapes-Seq [7], where each point in the
scatter plots stands for a pixel representation. All 15 classes are
sampled to visualize. σintra is the intra-class variance (lower is
better) and σinter is the inter-class variance (higher is better) of the
feature space. All the methods are evaluated on the same selected
video samples. In comparison, the proposed STPL learns the most
discriminative feature space, which is reflected by the lowest σintra

and the highest σinter .

A3. More on feature visualization
Figure 6 provides the t-SNE visualization [42] of the fea-

ture space learned for the VIPER→ Cityscapes-Seq bench-
mark, where only four classes are sampled for simplicity. In
this section, we visualize all 15 classes (see Figure 8). As can
be seen, the proposed STPL learns the most discriminative
feature space. It acquires the lowest σintra and the highest
σinter. This once again demonstrates STPL’s ability to learn
semantic correlations among pixels in the spatio-temporal
space.


