
Appendix for CapDet: Unifying Dense Captioning and Open-World Detection
Pretraining

A. Detailed Experimental Settings
The detailed architecture parameters for different modules of CapDet are shown in Table 1. For the learning rate scheduler,

we assign a base learning rate and then linearly warm it up to the peak learning rate according to the effective total batch size
by a square root strategy, lrpeak = lrbase ×

√
batchsize/16, e.g., we set image encoder base learning rate to 1× 10−4 and it

automatically scales to 1.4× 10−4. The training hyperparameters used for CapDet are shown in Table 2.

Image Encoder Value

backbone swin-t
neck fpn
input resolution 1333×800

Text Encoder Value

width 512
heads 8
layers 12

Cross-Modal Decoder Value

width 512
heads 12
layers 12

Table 1. Detailed architecture parameters for different module.

Hyperparameter Value(%)

Image encoder lr 1.4× 10−4

Text encoder lr 1.4× 10−5

Crossmodal decoder lr 1.4× 10−5

Learning policy CosineAnnealing
warmup ratio 0.0001
warmup iters 1000
batchsize 32
weight decay 0.05
wc 1
wd 1

Table 2. The training hyperparameters used for CapDet.

B. Fine-tuning Results on LVIS
We provide the fine-tuning results on LVIS in Table 3 below. We observe that CapDet outperforms the baseline DetCLIP

with 1.2% AP on average and 6.5% AP on rare classes. Besides, though pre-trained with fewer data and tasks, CapDet shows
a competitive performance compared with the GLIPv2.

MODEL BACKBONE PRE-TRAIN DATA IMAGES NUMBER
LVIS

AP APr / APc / APf

DETCLIP-T(C)* [11] SWIN-T O365, VG 0.73M 45.6 33.6 / 45.8 / 47.5
GLIPV2-T [8] SWIN-T+DH+F O365, GOLDG, CAP4M 5.43M 50.6 - / - / -

CAPDET SWIN-T O365, VG 0.73M 47.2 40.1 / 46.9 / 48.7

Table 3. Fine-tuning performance on LVIS [4] MiniVal5k datasets. APr/APc/APf indicate the AP values for rare, common, and frequent
categories. ‘DH’ and ‘F’ in GLIP [8] baselines stand for the dynamic head [2] and cross-modal fusion.
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C. Open-World Detection Results on LVIS Full Validation Set
Table 4 reports our zero-shot object detection performance on LVIS [4] full validation set. Following [8, 11], we take the

class names with additional manually designed prompts as input of text encoder. Comparing the 5th row and 6th row, our
CapDet still outperforms DetCLIP-T(C) on the same data scale and backbone with an extra simple caption head. The zero-
shot performance surpasses the previous methods with the same backbone by a large margin on rare classes, e.g., CapDet
trained on fewer data outperforms GLIP-T [8] by 10.8% on APr.

MODEL BACKBONE PRE-TRAIN DATA IMAGES NUMBER
LVIS VAL FULL

AP APr / APc / APf

GLIP-T(A) [8] SWIN-T+DH+F O365 0.66M 12.3 6.00 / 8.00 / 19.4
GLIP-T [8] SWIN-T+DH+F O365,GOLDG,CAP4M 5.43M 17.2 10.1 / 12.5 / 25.2

DETCLIP-T(A) [11] SWIN-T O365 0.66M 22.1 18.4 / 20.1 / 26.0
DETCLIP-T(C) [11] SWIN-T O365, VG 0.73M 23.5 18.4 / 21.6 / 27.9

CAPDET SWIN-T O365, VG 0.73M 26.1 20.9 / 24.4 / 30.2

Table 4. Zero-shot transfer performance on LVIS [4] full validation dataset. APr/APc/APf indicates the AP values for rare, common, and
frequent categories. ‘DH’ and ‘F’ in GLIP [8] baselines stand for the dynamic head [2] and cross-modal fusion.

D. Analysis of the Improvements on OVD
We attribute the improvements on OVD to the reason that the incorporation of captioning head brings more generalizability

for the region features, which in turn helps the learning of OVD task. Specifically, the dense captioning task is essentially
a sequential classification task with a large enough class space (i.e., word tokens), while alignment task is a single-step
classification task with a limited class space. Therefore, training with dense captioning tasks will bring the region feature
into a more proper location in feature space rather than simply pulling them together via only detection task. As shown in
Table 5, we further conduct the experiments to demonstrate the effectiveness of pre-training under captioning. By comparing
the row 2 and 5, we observe that even with only dense captioning data (VG data), pre-training with the dense captioning
paradigm also brings a significant improvement.

MODEL PRE-TRAIN DATA
LVIS

AP APr / APc / APf

DETCLIP-T [11]
O365 28.8 26.0 / 28.0 / 30.0
VG 10.3 8.6 / 10.1 / 10.8

O365, VG 31.5 27.5 / 30.6 / 33.0

CAPDET
O365 28.5 25.2 / 27.5 / 29.9
VG 11.4 10.2 / 11.1 / 11.8

O365, VG 33.8 29.6 / 32.8 / 35.5

Table 5. Zero-shot performance on LVIS [4] MiniVal5k datasets. APr / APc / APf indicate the AP values for rare, common, and frequent
categories, respectively. “DH” and “F” in GLIP [9] baselines stand for the dynamic head [2] and cross-modal fusion, respectively.

E. ‘Real’ Open-world Object Detection Deployment Strategy
In this paper, the detection and dense captioning task are illustrated separately for better understanding and comparison

with other methods, since no benchmark has considered combining these two tasks. For the practical deployment, we
propose a simple two-stage ensemble way to stay true to the motivation. Specifically, in the first stage, we execute detection
on images among the pre-defined categories list and treat the proposals with maximum alignment scores among all classes
less than a threshold as ‘unknown’ objects. Then in the second stage, we generate the captions for the ‘unknown’ objects. To
demonstrate the effectiveness of the proposed strategies, We conduct detection on the images with 80 categories of COCO
and regenerate captions for the ‘unknown’ objects. As shown in the Figure 1 , our proposed strategy expands the semantic
space of the limited categories list and shows reasonable results.



Figure 1. Deployment results.

F. More Ablation Studies
Ablations on Pre-trained Language Model Table 6 reports the effect of different tokenizers and pre-trained language
models loaded for text encoder. We ablate two kinds of pre-trained language models and corresponding tokenizers for our
text encoder. For dense captioning head, we construct the same decoder as BLIP [7] decoder and keep the tokenizer the same
as the text encoder. The results indicate the FILIP [12] encoder with byte pair encoding performs a better generalization,
since it is pre-trained on a larger scale of data, i.e., 300M in FILIP [12] vs. 128M in BLIP [7].

Pre-trained Model Tokenizer Vocab Size DC Head LVIS
AP APr / APc / APf

BLIP [7] WordPiece 30524 ✗ 30.4 26.7 / 29.4 / 32.0
✓ 32.4 27.4 / 31.8 / 33.9

FILIP [12] BPE 49408 ✗ 31.5 27.5 / 30.6 / 33.0
✓ 33.8 29.6 / 32.8 / 35.5

Table 6. Effect of different tokenizers and language models. ‘DC Head’ and ‘BPE’ stand for the integration of Dense Captioning Head and
Byte Pair Encoding.

Ablations on the Weighting Factor of Dense Captioning Loss We study the effect of weights of detection loss and dense
captioning loss during pre-training. We set the weighting factor of detection loss wd to 1.0. Table 7 provides the ablations of
the weighting factor of dense captioning loss wc. We choose wc = 1 for CapDet, since the result of overall AP is the best.

wc
LVIS

AP APr / APc / APf

0.5 33.6 31.0 / 32.8 / 34.9
1.0 33.8 29.6 / 32.8 / 35.5
1.5 33.5 32.0 / 32.1 / 35.0

Table 7. Effect of weighting factor of dense captioning loss.

G. More Qualitative Results
Open-World Detection Results Figure 2 illustrates more detection results on LVIS [4] dataset from our CapDet. We
highlight the detected rare classes’s text in red.

Dense Captioning Results Figure 3 shows more captioning results on VisualGenome [5] dataset. Our model CapDet
locates not only “object” such as “bicycle” but also “region” such as “a shadow on the ground”. We also explored the zero-



Figure 2. Qualitative visualizations on LVIS.

Figure 3. Qualitative visualizations on VG.

shot generalization ability of CapDet. We directly use our model to do the zero-shot dense captioning task without finetuning
on serveral datasets, which include SBU [10], LVIS [4], Open Image [6], BDD100K [13], Pascal VOC [3] and COCO [1].
As shown in Figure 4, CapDet can accurately locate objects and generate corresponding region-grounded captions.



BDD100k Pascal VOC

SBU LVIS Open Image

COCO

Figure 4. Qualitative visualizations on several datasets.
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