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1. Loss Functions
We train NeuralUDF by enforcing the consistency of the

rendered colors and the ground truth colors of the input im-
ages without using 3D ground truth shapes. Specifically, we
optimize our neural networks and two trainable probabilis-
tic parameters κ and β by randomly sampling a batch of
pixels and their corresponding rays. Suppose that the size
of sampling points in a ray is N and the batch size is M .

The overall loss function is defined as a weighted sum of
several loss terms:

L = Lcolor +λ0Lpatch +λ1Leik +λ2Lreg (+γLmask ) . (1)

The color loss Lcolor is defined as

Lcolor =
1

M

∑
k

|Ĉk − Ck|, (2)

where Ĉk is the rendered color of the k-th pixel in a batch,
and Ck is the corresponding ground truth color.

Same as the prior works [7–9], we utilize the Eikonal
term on the sampled points to regularize the UDF field fu
to have unit norm of gradients:

Leik =
1

NM

∑
k,i

(
∥∇fu (rk(tk,i))∥2 − 1

)2
. (3)

Optionally, if extra object masks are provided, we can
adopt a mask loss:

Lmask = BCE
(
Mk, Ôk

)
, (4)

where Mk is the mask value of the k-th pixel, Ôk =∑n
i=1 Tk,iσk,iδk,i is the sum of weights of volume render-

ing along the camera ray, and BCE is the binary cross en-
tropy loss.

*Corresponding authors.
†This work was conducted during an internship at Tencent Games.
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Figure 1. Illustration about zero level sets of UDF and SDF.

Besides minimizing the differences between the ren-
dered color and ground truth color pixel by pixel, we render
the colors of a local patch using the patch blending strategy
used in [4] and enforce the consistency of the rendered col-
ors and ground truth colors at the patch level by including
the loss term:

Lpatch =
1

M

∑
k

R
(
P̂k, Pk

)
, (5)

where the P̂k are the rendered colors of a patch centering the
k-th sampled pixel and the Pk are the corresponding ground
truth colors. Empirically, we choose R to be the Structural
Similarity Index Measure (SSIM) metric.

2. Zero Level Set Analysis
The key point of applying volume rendering to UDF is

finding the intersection point t∗ of the ray and the surface,
that is, the zero level set of UDF. However, it’s challenging
for UDF to find the intersection point t∗, since it’s impossi-
ble to locate a point with exact zero UDF value. A common
practice is to find points whose UDF values are smaller than
a pre-defined threshold ϵ. As a result, the approximated
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surfaces will be relaxed from exact zero level set to be a
ϵ-bounded surface band S =

{
x ∈ R3 | fu(x) < ϵ

}
.

However, finding an appropriate ϵ is difficult for the re-
construction task. A typical case is shown in Figure 1, a ray
first passes by a surface at point t0 and then hit on a surface
at point t∗. It’s easy for SDF to locate the intersection point
t∗ by finding the sign flipping of SDF values. On the con-
trary, UDF gives all positive values, thus leading to the dif-
ficulty in distinguishing the two points t0 and t∗. To locate
the true surface intersection point, the pre-defined ϵ should
be smaller than the udf value fu(r(t0)), otherwise the point
t0 will be mistakenly located as the intersection point, caus-
ing inaccurate volume rendering. Moreover, for objects
with complex geometries, a fixed ϵ cannot be adapted to
different optimization stages. To tackle these problems, we
leverage probabilistic models to design a differentiable indi-
cator function Ψ(t) to locate the surface intersection points.

3. More Implementation Details
3.1. Network architecture

Following the prior works [7–9], we use two MLPs to
encode UDF and color respectively. The unsigned distance
function fu is modeled by an MLP that consists of 8 hidden
layers with hidden size of 256. A skip connection [6] is used
to connect the output of the fourth layer and the input. The
color function c is modeled by an MLP with 8 hidden layers
with size of 256, which takes the combination of spatial lo-
cation r(t), the view direction v, and a 256-dimension fea-
ture vector from the UDF MLP as input. Same as the prior
works [7–9], we apply positional encoding to the spatial lo-
cation r(t) with 6 frequencies and to the view direction v
with 4 frequencies.

3.2. Training details

The Adam [3] optimizer is used to train our networks.
We set the learning rate of the UDF MLP as 1e-4 and the
other networks and trainable parameters as 5e-4, and the
learning rates are controlled by the cosine decay schedule.
We set the constant parameter α of the Eq.6 in the main pa-
per as 20, and the constant parameter τ of the Eq.11 in the
main paper as 25000. The loss weights of Eq. 1 are set as
λ0 = 0.1, λ1 = 0.1, λ2 = 0.0 for the DTU [2] dataset, and
set as λ0 = 0.0, λ1 = 0.01, λ2 = 0.01 for the DeepFash-
ion3D [11] dataset. γ will be set to 0.1 if mask loss term is
adopted.

3.3. Hierarchical sampling

To sample more points close to the surfaces, we adopt a
hierarchical sampling strategy. We first uniformly sample
64 points along the ray, then we iteratively conduct impor-
tance sampling for 5 times. The coarse probability estima-
tion in the i-th iteration is computed by density function

with fixed κ and β, which are set as 32× 2i and 32× 2i+1

respectively. We sample extra 16 points in each iteration,
and the total number of sampled points is 144. We scale the
scene to be reconstructed in the unit sphere, and model the
space outside the unit sphere using NeRF++ [10].

4. More Reconstruction Results

Here we show the remaining qualitative comparisons
of DeepFashion3D [11] and DTU [2] datasets. Since the
DeepFashion3D dataset only provides ground truth point
clouds, we use Ball Pivoting meshing algorithm [1] to re-
construct meshes for better visualization. As shown in Fig-
ure 4, the SDF based methods model all the shapes as closed
surfaces and cannot faithfully recover the captured objects,
thus causing erroneous geometries. This is because these
methods enforce strong assumption on the closeness of the
target shapes. For example, for the first row and the second
row, NeuS and VolSDF give closed surfaces for the dress
and the trouser where their opening boundaries are even in-
correctly connected, thus leading to noticeable errors. For
the 8-th row, NeuS attempts to use a double-layered sur-
face to represent the thin cloth; optimizing the tiny SDF
band is difficult and its result contains holes. In contrast,
our method faithfully reconstruct the geometries with clean
and sharp open boundaries.

The remaining comparisons of DTU [2] dataset are plot-
ted in Figure 5 and Figure 6. Unlike the SDF based meth-
ods that are particularly designed for closed surfaces, our
method adopts UDF as surface representation and does
not enforce the closed surface assumption. Although our
method doesn’t impose the closed surface constraint, our
method still achieves comparable performance with the
SDF based methods. As shown in the Figure 5, for the
second row, NeuS and VolSDF fails to accurately recon-
struct the challenging side part of the Brick (the red marked
box) since this part is occluded in many input images and
lacks enough photography consistency, while our result is
more accurate and contain less artifacts. For the 7-th row,
the Can with reflecting material, the reconstruction results
of NeuS and VolSDF have indentation artifacts on the sur-
face while our method successfully reconstructs the flat and
smooth surface.

The experiments validate that, unlike that the SDF based
methods are limited to closed shapes, our method is more
flexible and can cope with more types of shapes with either
open or close surfaces, thus extending the underlying geo-
metric representation of neural volume rendering to various
topologies.

5. Novel view synthesis

We conduct the novel view synthesis comparison on the
DeepFashion3D dataset. The average PSNR of NeRF, Ours
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Figure 3. (a) A case of erroneous reconstruction for surfaces with
unstable textures. (b) A case that produces smooth surfaces of
cloth wrinkles.

and NeuS are 30.69, 29.21, 28.47 respectively. As shown
in Figure 2, since NeuS cannot correctly model the geom-
etry of open surfaces, the rendered colors of such regions
(red box) have large errors, while ours and NeRF can pro-
duce correct colors. We also notice that NeRF, dedicated
for novel view synthesis, showing the best quality for this
task.

6. Discussions and Limitations
One limitation is that the performance of our method

will degrade when the surface textures are unstable and
lack enough distinguishable features (textureless or reflec-
tive surface). Figure 3 (a) shows a pair of comparison re-
sults. With the strong priors of closed and continuous sur-
faces, SDF can produce reasonable geometry even with un-
stable textures. Contrarily, UDF does not impose any topol-
ogy priors and the representation has a much higher degree
of freedom. Therefore, when the textures are unstable, the
optimization of the accurate surface for UDF can be fairly
difficult.

Another limitation is that our method produces smoother
results that may lack some geometric details compared with
the SDF-based methods. Figure 3 (b) shows a case where
our method generates smoother surfaces while does not cap-
ture the subtle cloth wrinkles accurately. The leading cause
of smoothness is the inherent property of the implicit UDF
representation: (1) UDF field does not have sign changes,
and thus in practice the neural surface can only be approx-
imated by a ϵ-bounded band S =

{
x ∈ R3 | fu(x) < ϵ

}
;

(2) UDF is not differentiable at the zero level sets. To cap-
ture more surface details, the ϵ should be minimized in the

optimization. However, the non-differentiability means the
gradients of the optimized UDF field in the ϵ-bounded band
will become increasingly unstable and inaccurate when ϵ is
closing to zero. Therefore, optimizing the surface details is
more difficult for UDF, compared to SDF that is fully differ-
entiable and has clear sign changes indicating the surfaces.
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Figure 4. Qualitative comparisons with SOTAs on DeepFashion3D [11] dataset. The GT meshes are reconstructed from GT point clouds
provided by DeepFashion3D dataset using Ball Pivoting algorithm [1].
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Figure 5. Qualitative comparisons with SOTAs on DTU [2] dataset (Part 1/2).
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Figure 6. Qualitative comparisons with SOTAs on DTU [2] dataset (Part 2/2).
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