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Figure 9. An illustration of our synthetic data generation pipeline.

6. Dataset
6.1. Training synthetic dataset

The pipeline for generating the training dataset is shown
in the Figure 9. First, we pick geometric objects, scale them
and scatter them at different depths in the scene randomly,
forming 200 scenes. Second, to better match the data distri-
bution to real-world images, we wrap the surfaces of the ob-
jects with images sampled from the MS-COCO dataset [6]
as their textures. The sampled images are from 2017 Val
images, a subset of MS-COCO. The final step is to render
480 images as an image focal stack for each scene and then
to render the ground truth image as an all-in-focus image
with a small aperture.

After rendering the image focal stack, we input them
into DVS-Voltmeter [5] to generate event streams. To im-
prove the generalization of the model to unknown types
of event cameras, we apply the 6 different camera pa-
rameters in DVS-Voltmeter randomly. Each camera pa-
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Table 3. Settings of DVS-Voltmeter [5] parameters.

Param. range DVS346 DVS240

k1 [4.0, 5.5] 5.3 4.4
k2 [18, 25] 20 23
k3 [5× 10−5, 2.5× 10−4] 1× 10−4 2× 10−4

k4 [0.8× 10−7, 1.2× 10−7] 1× 10−7 1× 10−7

k5 [3× 10−9, 8× 10−8] 5× 10−9 5× 10−8

k6 [8× 10−6, 1.2× 10−5] 1× 10−5 1× 10−5

rameter (k1 ∼ k6) is randomly sampled from the range
[Min,Max] shown in Table 3. The reference columns
“DVS346” and “DVS240” are the parameters calibrated on
the event camera models DVS346 and DVS240, provided
as DVS-Voltmeter preset configurations [5].

6.2. Real-captured data

As shown in Figure 10, we build a hybrid camera sys-
tem consisting of a machine vision camera (HIKVISION
MV-CA050-12UC) and an event camera (PROPHESEE
GEN4.0) with a beam splitter. For calibration, we use a
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Figure 10. Our hybrid camera system.

Table 4. Ablation study on loss functions.

PSNR ↑ SSIM ↑ MS-SSIM ↑ LPIPS ↓

L2 only 33.04 0.9305 0.9605 0.1547
perc. only 31.51 0.8977 0.9567 0.1580
L1 + perc. 33.09 0.9300 0.9599 0.1515
L2 + perc. 33.25 0.9323 0.9611 0.1510

checkerboard to deal with homography and radial distortion
between two views.

7. Ablation Experiment
7.1. Loss function

We ablate different loss functions (L2 loss only, percep-
tual loss only, L1 loss + perceptual loss) from the complete
model (L2 loss + perceptual loss) and evaluate them quan-
titatively in Table 4. Results show that the combination
of L2 loss and perceptual loss improves the performance
of EvRefocusNet and EvMergeNet in reconstructing all-in-
focus images.

7.2. Qualitative comparison

The qualitative comparison among the different ablation
studies is shown in Figure 11. According to the results, our
complete model can produce a sharper, all-in-focus image.
Note that ET-Net [9] only reconstructs gray-scale images,
thus, we only compare the results of “ET+MNet” with the
gray-scale ground truth.

7.3. Analysis

To verify the effectiveness of each module, we conduct
three ablation studies, shown Section 4.3, and the detailed
analysis of each ablation study is listed as follows:

• “ET+MNet”: Our EvRefocusNet takes a single defo-
cused image with the corresponding event stream as

Table 5. Quantitative results on the LiFF dataset [1].

PSNR ↑ SSIM ↑ MS-SSIM ↑ LPIPS ↓

KPAC [8] 27.96 0.8396 0.9115 0.2473
IFAN [4] 29.59 0.8119 0.8679 0.3741
APL [10] 27.14 0.7758 0.8522 0.4060
DRBNet [7] 30.51 0.8639 0.9278 0.2164
Ours 33.25 0.9323 0.9611 0.1510

input, while ET-Net [9] only utilizes the event stream,
resulting in a lack of texture details.

• “RNet+GDF”: Since the event stream provides high-
temporal-resolution edge information, compared with
gradient domain fusion [11], our EvMergeNet can pre-
dict more accurate weights for focal stack merging.

• “Uniform”: By dynamically selecting refocus dis-
tances with our golden search method instead of sam-
pling distances uniformly, our method can refocus to
objects which would fall between the uniform samples
otherwise, as illustrated in Figure. 2 (the blue cube is
out of focus in all focal stack images). Our method
also avoids refocusing on distances with no objects,
which causes a waste of computation when distances
are sampled uniformly.

8. Experiments with Image-based Methods
To compare with single-image-based methods compre-

hensively, we feed them with 10 images in the same scene,
which are focused at different focal distances, obtain the 10
defocused deblurring images, and then calculate the aver-
age metric values as the final results. The quantitative result
is shown in Table 5. Based on the results, our method still
outperforms the state-of-the-art image-based methods.

9. Speed Variation Issue of Focal Plane
For convention image focal stack methods [2,11], the fo-

cal plane must move at a stable speed. However, our EFS is
less affected by this restriction. We take EFS by rotating the
focus ring by hand, which inevitably makes the focal plane
move at a varying speed. With the high temporal resolu-
tion property, the event camera can detect scene radiance
changes at the microsecond level. Since our manual rota-
tion speed is much slower than its temporal resolution, the
performance of our method is robust to such speed varia-
tion. As the example in Figure 12 shows, our method can
restore an all-in-focus image with consistently high quality,
given EFS captured at different speeds. As we capture EFS
manually, we show histograms of the number of events at
each timestamp to partially reflect the speed variation when
rotating the focus ring for EFS capture.



(a) Defocused Image (b) Ground Truth (c) Ours (d) Uniform (e) RNet+GDF (f) ET+MNet

Figure 11. Visual quality comparison of ablation studies on synthetic data.
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Figure 12. Results of our method given EFS captured at different speeds. Below each image, we show the histograms of the number of
events at each timestamp, to partially reflect the speed variation when rotating the focus ring for EFS capture.

10. Network Details

In this section, we present architecture details of our
EvRefocusNet (shown in Table 6) and EvMergeNet (shown
in Table 7). Since we split the defocused image into N ×N
spatially non-overlapping image patches, in which N is set
to 8 in our implementation, the reconstructed image focal
stack is composed of 64 refocused images correspondingly.

11. Image Focal Stack

Our method can restore images refocused at arbitrary fo-
cus distances from a single defocused image and the corre-
sponding EFS. The generated image focal stacks are shown
in our project page.

12. More Results on Synthetic Dataset

In this section, we provide more qualitative comparisons
among our method, DRBNet [7], IFAN [4], KPAC [8], and
APL [10] on synthetic data, shown in Figure 13, Figure 14,
and Figure 15.

13. More Results on Real Dataset
In this section, we provide more qualitative comparisons

among our method, DRBNet [7], IFAN [4], KPAC [8], and
APL [10] on real data, shown in Figure 16.
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Table 6. Network details of EvRefocusNet. DenseConv modules are densely connected convolutional blocks [3]. ResBlock modules are
residual blocks. Deconv modules are transposed convolutional blocks. All modules include batch normalization and activation functions.

EvRefocusNet Input Kernel Size Stride In Channels Out Channels Output

Conv1 Defocused Image 3 1 3 64 conv1
DenseConv1 conv1 3 1 64 128 denseconv1

Conv2 denseconv1 2 2 128 128 conv2
DenseConv2 conv2 3 1 128 256 denseconv2

Conv3 denseconv2 2 2 256 256 conv3
DenseConv3 conv3 3 1 256 512 denseconv3

ConvE1 Event Stack 3 1 64 64 conve1
DenseConvE1 conve1 3 1 64 128 denseconve1

ConvE2 denseconve1 2 2 128 128 conve2
DenseConvE2 conve2 3 1 128 256 denseconve2

ConvE3 denseconve2 2 2 256 256 conve3
DenseConvE3 conve3 3 1 256 512 denseconve3

Deconv2 [denseconv3, denseconve3] 2 2 1024 256 deconv2
Conv5 [denseconv2, denseconve2, deconv2] 1 1 768 128 conv5

DenseConv5 conv5 3 1 128 256 denseconv5
Deconv1 denseconv5 2 2 256 128 deconv1
Conv6 [denseconv1, denseconve1, deconv1] 1 1 384 64 conv6

ResBlock1 conv6 3 1 64 64 resblock1
ResBlock2 resblock1 3 1 64 64 resblock2
PredConv resblock2 3 1 64 3 pred

Table 7. Network details of EvMergeNet. DenseConv modules are densely connected convolutional blocks [3]. ResBlock modules are
residual blocks. Deconv modules are transposed convolution blocks. All modules include batch normalization and activation functions.

EvMergeNet Input Kernel Size Stride In Channels Out Channels Output

Conv1 Image Stack 3 1 3 ∗ 64 64 conv1
DenseConv1 conv1 3 1 64 128 denseconv1

Conv2 denseconv1 2 2 128 128 conv2
DenseConv2 conv2 3 1 128 256 denseconv2

Conv3 denseconv2 2 2 256 256 conv3
DenseConv3 conv3 3 1 256 512 denseconv3

ConvE1 Event Stack 3 1 64 64 conve1
DenseConvE1 conve1 3 1 64 128 denseconve1

ConvE2 denseconve1 2 2 128 128 conve2
DenseConvE2 conve2 3 1 128 256 denseconve2

ConvE3 denseconve2 2 2 256 256 conve3
DenseConvE3 conve3 3 1 256 512 denseconve3

Deconv2 [denseconv3, denseconve3] 2 2 1024 256 deconv2
Conv5 [denseconv2, denseconve2, deconv2] 1 1 768 128 conv5

DenseConv5 conv5 3 1 128 256 denseconv5
Deconv1 denseconv5 2 2 256 128 deconv1
Conv6 [denseconv1, denseconve1, deconv1] 1 1 384 64 conv6

ResBlock1 conv6 3 1 64 64 resblock1
ResBlock2 resblock1 3 1 64 64 weights
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Figure 13. Visual quality comparison with image-based defocus deblurring methods on synthetic data (Part I). (a) Defocused image. (b)
Events. (c)∼(g) All-in-focus results of DRBNet [7], IFAN [4], KPAC [8], APL [10], and ours. (h) Ground truth.



(a) Defocused Image 

(b) Events 

(c) DRBNet

(d) IFAN

(e) KPAC

(f) APL

(g) Ours

(h) Ground Truth

Figure 14. Visual quality comparison with image-based defocus deblurring methods on synthetic data (Part II). (a) Defocused image. (b)
Events. (c)∼(g) All-in-focus results of DRBNet [7], IFAN [4], KPAC [8], APL [10], and ours. (h) Ground truth.
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Figure 15. Visual quality comparison with image-based defocus deblurring methods on synthetic data (Part III). (a) Defocused image. (b)
Events. (c)∼(g) All-in-focus results of DRBNet [7], IFAN [4], KPAC [8], APL [10], and ours. (h) Ground truth.
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Figure 16. Visual quality comparison with image-based defocus deblurring methods on real data. (a) Defocused image. (b) Events. (c)∼(g)
All-in-focus results of DRBNet [7], IFAN [4], KPAC [8], APL [10], and ours.
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