
Supplementary Material:
Content-aware Token Sharing for Efficient Semantic Segmentation

with Vision Transformers

Chenyang Lu∗, Daan de Geus∗, Gijs Dubbelman
Eindhoven University of Technology

{c.lu.2, d.c.d.geus, g.dubbelman}@tue.nl

In this document, we provide the following material in ad-
dition to the main manuscript:

• More extensive implementation details (Section 1).

• Detailed results for the dynamic token sharing experi-
ment (Section 2).

• Additional qualitative results, showing predictions by
both the policy network and the complete semantic
segmentation network (Section 3).

The code for Content-aware Token Sharing (CTS) is avail-
able through https://tue-mps.github.io/CTS.

1. Implementation details
Below, we provide the implementation details for the

networks used in our experiments. Note that, for our main
experiments, we conducted each experiment 5 times, and
report the median mIoU.

1.1. Policy network

Our default Content-aware Token Sharing (CTS) policy
network, used to identify what superpatches should share a
token, is based on EfficientNet [10]. Specifically, we use
EfficientNet-Lite0, a light version of EfficientNet-B0, pre-
trained on ImageNet-1K [7], using the code and pre-trained
model weights from the timm repository [12]. To be able
to make a prediction per superpatch, we first output the fea-
tures before the final classification head. By design of the
network, these features have resolution Hp ×Wp that is 32
times smaller than the resolution of the input images. As all
segmentation networks used in this work use a patch size
of 16 × 16 pixels, a superpatch is 32 × 32 pixels. There-
fore, each of the Hp ·Wp features represent one superpatch.
To get a policy prediction per superpatch, we add one fi-
nal 1 × 1 convolutional layer that maps the features to two

*Both authors contributed equally.

classes, i.e., (1) the superpatch contains a single class and
(2) the superpatch contains multiple classes. We train the
policy network separately for ADE20K [14], Pascal Con-
text [6] and Cityscapes [3]. The policy network is always
trained for 50k iterations with batches of 8 image crops, a
learning rate of 5×10−5 and a weight decay of 10−3, using
the AdamW optimizer [5].

Large and small policy networks. In Table 2 of the main
manuscript, we also provide results for a large and small
policy network. The large policy network is EfficientNet-
B1 [10], pre-trained on ImageNet-1K [7], using the code
and pre-trained weights from the timm repository [12]. All
hyperparameters are the same as for the default policy net-
work. The small policy network is a custom neural network
that has seven 3 × 3 convolutional layers, with 128 output
channels per convolution, and a final 1 × 1 convolution to
output a prediction for two classes. Strided convolutions
are used to reduce the resolution by a factor of 32. This net-
work is not pre-trained, and we train it with a learning rate
of 10−3.

1.2. Segmenter

In our main experiments, we apply our CTS to a
transformer-based semantic segmentation network, Seg-
menter [9]. For these experiments, we implement CTS in
the official, publicly available code of Segmenter, and we
use the original training settings. That means that we use a
batch size of 8 for all experiments, use the Stochastic Gra-
dient Descent (SGD) optimizer with a momentum of 0.9, a
weight decay of 0.0, and a polynomial decay learning rate
schedule. For ADE20K, we train for 64 epochs with an
initial learning rate of 0.001, resize the shortest side of im-
ages to 512 pixels, and take random crops of 512 × 512
pixels. For the ViT-L (640) setting in Figure 5 of the main
manuscript, we resize the shortest side of images to 640 pix-
els, and take random crops of 640× 640 pixels. For Pascal
Context, we train for 256 epochs with an initial learning rate
of 0.001, resize the shortest side of images to 520 pixels,

1

https://tue-mps.github.io/CTS


and take random crops of 480×480 pixels. For Cityscapes,
we train for 216 epochs with an initial learning rate of 0.01,
and take random crops of 768× 768 pixels.

DeiT and BEiT. For our experiment with different back-
bones, we use DeiT-B and BEiT-B in addition to the stan-
dard ViT backbones. For DeiT-B [11], we follow the set-
tings from Segmenter, and initialize the backbone with dis-
tilled weights from the timm repository [12], pre-trained on
ImageNet-1K. In the experiments with the BEiT-B back-
bone [1], we also use the code and pre-trained weights from
timm, but we make minor changes for compatibility: (1)
We use the AdamW optimizer with an initial learning rate
of 10−5 and weight decay of 10−3 because the SGD op-
timizer made training unstable. (2) Because BEiT works
with relative position embeddings between all tokens, these
have to be shared too, when a superpatch shares a token. We
empirically find that picking the relative position to one of
the patches in a superpatch works just as well as taking the
mean of the relative positions to each of them, while being
significantly faster.

1.3. UPerNet

ViT + UPerNet. For our experiments with the UPer-
Net [13] decoder in combination with the standard ViT
backbone [4, 8], we use the publicly available code and hy-
perparameters from the mmsegmentation repository [2], and
implement CTS in this code. This means that we train these
networks for 160k iterations, with a batch size of 16. We
first resize the shortest side of images to 512 pixels, and
then take random crops of 512 × 512 pixels. We use the
AdamW optimizer, with a learning rate of 6 × 10−5 and a
weight decay of 0.01.

BEiT + UPerNet. When applying our CTS to state-of-the-
art network BEiT-L + UPerNet [1,13], we also use the pub-
licly available code and hyperparameters from the mmseg-
mentation repository [2]. The weights of BEiT-L are initial-
ized using the publicly available weights from timm [12].
We train the networks with a batch size of 8, for 320k it-
erations. We first resize the shortest side of images to 640
pixels, and then take random crops of 640×640 pixels. The
networks are optimized using AdamW, with a learning rate
of 2 × 10−5 and a weight decay of 0.05. Again, we handle
the relative positions embeddings as described for BEiT-B
in Section 1.2.

2. Dynamic token sharing
In Section 5.5 of the main manuscript, we analyze

whether it is desirable to let the number of shared tokens,
S, depend on the complexity of the image. To evaluate this,
we feed each image through the policy network, and use its
predictions to determine how many superpatches can share
a token. If the predicted score for a superpatch is above

a threshold τ , we assume that this superpatch contains a
single class, and can therefore share a token. The result-
ing number of superpatches that can share a token for each
image is then given by S∗. Then, we make sure that a maxi-
mum of S∗ superpatches are shared per image. Specifically,
from a set of models trained with different token sharing
settings S, we pick the model with the highest token shar-
ing setting S for which S < S∗. Subsequently, we let the S
highest-scoring superpatches share a token, and feed the re-
sulting tokens through the segmentation model trained with
setting S. In Table 1, we provide the results for this analysis
for different values of threshold τ . It can be observed that,
for all evaluated thresholds, the combined mIoU is consis-
tently higher than the highest mIoU among all the individ-
ual models. Note that this high performance is obtained by
processing more images by the models with higher token re-
duction settings, which have a lower individual mIoU when
processing all images. Moreover, the average token reduc-
tion is above the 30% reduction setting which was found to
be optimal when the number of shared tokens is fixed. This
makes dynamic token sharing for semantic segmentation an
interesting topic for future research.

3. Qualitative results
Policy network In Figure 1 and Figure 2, we show qualita-
tive examples of predictions by our CTS policy network. In
the figures we can see that, for all three datasets, the policy
network learns to predict what superpatches contain a single
semantic class quite accurately. As a result, the S highest-
scoring superpatches, i.e., the superpatches that share a to-
ken, mostly consist of a single semantic class, as is the in-
tended behavior.

Semantic segmentation predictions In Figure 3 and Fig-
ure 4, we show qualitative examples of semantic segmen-
tation predictions by Segmenter [9] with our CTS. These
figures show that the network mostly predicts a single class
for the superpatches that share a token, which is intended
behavior. Additionally, we do not observe any qualitative
artifacts in the predictions that result from sharing tokens.

Finally, we show the results of our CTS with state-of-the-
art semantic segmentation network BEiT-L + UPerNet [1,
13] in Figure 5. These results show that it is possible to
achieve state-of-the-art segmentation quality with our CTS,
while also achieving a throughput increase of over 60%.

References
[1] Hangbo Bao, Li Dong, Songhao Piao, and Furu Wei. BEiT:

BERT Pre-Training of Image Transformers. In ICLR, 2022.
2, 8

[2] MMSegmentation Contributors. MMSegmentation: Open-
MMLab Semantic Segmentation Toolbox and Bench-
mark. https://github.com/open- mmlab/
mmsegmentation, 2020. 2

https://github.com/open-mmlab/mmsegmentation
https://github.com/open-mmlab/mmsegmentation


Token reduction
mIoU Processed images with different thresholds τ

(indiv. models) τ = 0.35 τ = 0.4 τ = 0.45 τ = 0.5 τ = 0.55 τ = 0.6 τ = 0.65

0% 45.0 1 2 3 8 12 22 32
12% 44.9 77 87 105 134 163 196 232
23% 45.0 150 191 219 244 270 289 316
30% 45.1 366 398 436 455 460 465 463
38% 44.7 446 427 410 397 394 392 386
46% 44.4 960 895 827 762 701 636 571

Average token reduction 38.2% 37.4% 36.5% 35.5% 34.6% 33.6% 32.4%
Combined mIoU 45.4 45.8 45.5 45.3 45.3 45.2 45.4

Table 1. Dynamic token sharing ablation. Results for the dynamic token sharing experiment for different settings of threshold τ .
Experiments with Segmenter [9] and ViT-S/16 [4] on the ADE20K validation set [14].

[3] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo
Rehfeld, Markus Enzweiler, Rodrigo Benenson, Uwe
Franke, Stefan Roth, and Bernt Schiele. The Cityscapes
Dataset for Semantic Urban Scene Understanding. In CVPR,
2016. 1, 5, 7

[4] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, Jakob Uszkoreit, and Neil Houlsby. An Image is
Worth 16x16 Words: Transformers for Image Recognition at
Scale. In ICLR, 2021. 2, 3

[5] Ilya Loshchilov and Frank Hutter. Decoupled Weight Decay
Regularization. In ICLR, 2019. 1

[6] Roozbeh Mottaghi, Xianjie Chen, Xiaobai Liu, Nam-Gyu
Cho, Seong-Whan Lee, Sanja Fidler, Raquel Urtasun, and
Alan Yuille. The Role of Context for Object Detection and
Semantic Segmentation in the Wild. In CVPR, 2014. 1, 5, 7

[7] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-
jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,
Aditya Khosla, Michael Bernstein, Alexander C. Berg, and
Li Fei-Fei. ImageNet Large Scale Visual Recognition Chal-
lenge. IJCV, 115(3):211–252, 2015. 1

[8] Andreas Peter Steiner, Alexander Kolesnikov, Xiaohua Zhai,
Ross Wightman, Jakob Uszkoreit, and Lucas Beyer. How to
train your ViT? Data, Augmentation, and Regularization in
Vision Transformers. TMLR, 2022. 2

[9] Robin Strudel, Ricardo Garcia, Ivan Laptev, and Cordelia
Schmid. Segmenter: Transformer for Semantic Segmenta-
tion. In ICCV, 2021. 1, 2, 3

[10] Mingxing Tan and Quoc V. Le. EfficientNet: Rethink-
ing Model Scaling for Convolutional Neural Networks. In
ICML, 2019. 1

[11] Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco
Massa, Alexandre Sablayrolles, and Herve Jegou. Training
data-efficient image transformers & distillation through at-
tention. In ICML, 2021. 2

[12] Ross Wightman. PyTorch Image Models. https:
//github.com/rwightman/pytorch- image-
models, 2019. 1, 2

[13] Tete Xiao, Yingcheng Liu, Bolei Zhou, Yuning Jiang, and
Jian Sun. Unified Perceptual Parsing for Scene Understand-
ing. In ECCV, 2018. 2, 8

[14] Bolei Zhou, Hang Zhao, Xavier Puig, Sanja Fidler, Adela
Barriuso, and Antonio Torralba. Scene Parsing through
ADE20K Dataset. In CVPR, 2017. 1, 3, 4, 6, 8

https://github.com/rwightman/pytorch-image-models
https://github.com/rwightman/pytorch-image-models
https://github.com/rwightman/pytorch-image-models


(a) Image with grid of super-
patches

(b) Semantic segmentation
ground truth

(c) Superpatches with a single
class

(d) Policy network prediction (e) S highest-scoring super-
patches (i.e., used policy)

Figure 1. Qualitative results policy network. Predictions by our content-aware token sharing policy network, on image crops from the
ADE20K validation set [14].



(a) Image with grid of super-
patches

(b) Semantic segmentation
ground truth

(c) Superpatches with a single
class

(d) Policy network prediction (e) S highest-scoring super-
patches (i.e., used policy)

Figure 2. Qualitative results policy network. Predictions by our content-aware token sharing policy network, on image crops from the
Cityscapes val set (top three images) [3] and Pascal Context validation set (bottom three images) [6].



(a) Input image (b) Used token sharing policy (c) Segmentation prediction (d) Segmentation ground truth
Figure 3. Qualitative results semantic segmentation from policy. Predictions by Segmenter with ViT-S/16 and our CTS, on image crops
from the ADE20K validation set [14].



(a) Input image (b) Used token sharing policy (c) Segmentation prediction (d) Segmentation ground truth
Figure 4. Qualitative results semantic segmentation from policy. Predictions by Segmenter with ViT-S/16 and our CTS, on image crops
from the Cityscapes val set (top three images) [3] and Pascal Context validation set (bottom two images) [6].



(a) Input image (b) Segmentation prediction (c) Segmentation ground truth
Figure 5. Qualitative results semantic segmentation state-of-the-art. Examples of results by BEiT-L + UPerNet [1,13], a state-of-the-art
semantic segmentation approach, with our CTS, on the ADE20K validation set [14]. With our CTS, we are able to increase the throughput
of this network by more than 64%, without decreasing the segmentation quality.


	. Implementation details
	. Policy network
	. Segmenter
	. UPerNet

	. Dynamic token sharing
	. Qualitative results

