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The supplementary file provides more details for paper ”Decomposed Soft Prompt Guided Fusion Enhancing for Compo-
sitional Zero-Shot Learning”, including the following aspects:

1. Summary Statistics of Datasets.

2. Backbone Study.

3. Hyper-Parameters Analysis.

4. Pseudocode.

5. Qualitative Results.

1. Summary Statistics of Datasets
We analyse three datasets included MIT -States [2], UT-Zappos [5] and C-GQA [4] statistically and the summary statistics

can be seen in Tab. 1. s and o denote the number of state and object concepts, and i represents the number of images. Also,
cs and cu are the pair concepts of seen and unseen classes.

Table 1. Summary statistics of the datasets used in our experiments, including MIT-States, UT-Zappos and CGQA.

Train Validation Test
Dataset s o cs i cs cu i cs cu i

MIT-States 115 245 1262 30338 300 300 10420 400 400 12995
UT-Zappos 16 12 83 22998 15 15 3214 18 18 2914

CGQA 453 870 6963 26920 1173 1368 7280 1022 1047 5098

2. Backbone Study
To evaluate the performance of DFSP with various backbone, we also retrain the model with same parameters (α = 0.01,

β = 0.1 and K = 1) and only replace the backbone with ViT-B/32, Vit-B/16 and ViT-L/14@336px due to the limitation
of image encoder in DFSP which is based on transformer networks [1]. Metrics contists of S, U, H and AUC and the
model (DFSP(t2i)) are tested on MIT-States and UT-Zappos with the settings of Closed-World (CW) and Open-World (OW).
Meanwhile, we evaluate DFSP with 5 random seeds to report the standard error, which can be seen in Tab. 2.

From the results in Tab. 2, we can see that ViT-14/L and ViT-L/14@336px achieve state-of-the-art (SOTA) results both on
Closed-World and Open-World. Meanwhile, all backbones work well on multiple metrics, especially on MIT-States, such as
AUC %12.8 versus %5.5 on SCEN [3] with the setting of Closed-World.

3. Hyper-Parameters Analysis
The loss function of DFSP is L = Ldfm + αLst+obj + βLspm, which contains two hyper-parameters α and β. Ldfm

is the final pair loss in DFM, Lst+obj is the decomposed features pair loss and Lspm is the pair loss before fusion in SPM.
To evaluate the influence of them for DFSP(t2i), we show the hyper-parameters analysis in this section on MIT-States and
UT-Zappos with the settings of Closed-World and Open-World. α and β are set to seven different orders of magnitude
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Table 2. DFSP with different backbone results on MIT-States and UT-Zappos with the settings of Closed-World (CW) and Open-World
(OW). We also report the standard error with 5 random seeds.

MIT-States UT-Zappos
Backbone S U H AUC S U H AUC
ViT-B/32 36.7±0.25 43.4±0.37 29.4±0.18 13.2±0.69 55.8±1.66 59.5±2.25 38.5±2.72 23.3±1.32
ViT-B/16 39.6±0.17 46.5±0.28 31.5±0.18 15.1±0.32 62.1±2.20 67.7±3.21 48.0±0.89 33.2±1.21
ViT-L/14 46.8±0.54 52.2±0.17 37.4±0.35 20.6±0.28 65.2±1.80 70.7±1.51 50.4±2.14 36.8±0.72

CW

ViT-L/14@336px 45.6±0.21 50.8±0.38 36.9±0.57 19.9±0.32 64.6±1.39 70.6±1.35 48.3±1.89 36.9±0.65
ViT-B/32 36.7±0.19 12.8±0.13 13.1±0.25 3.3±0.12 56.8±1.19 38.9±2.11 33.8±1.30 17.0±0.84
ViT-B/16 39.6±0.11 15.2±0.16 15.4±0.09 4.4±0.14 62.9±1.30 48.4±1.88 42.9±2.02 25.4±0.93
ViT-L/14 47.6±0.21 18.7±0.35 19.3±0.09 6.7±0.13 64.8±1.22 59.8±2.19 45.4±1.21 29.6±0.88

OW

ViT-L/14@336px 45.5±0.14 17.1±0.86 18.4±0.11 6.3±0.16 63.6±2.10 58.4±1.12 45.2±0.88 28.3±0.56

parameters, specifically [0, 0.01, 0.1, 0.5, 1.0, 5.0, 10.0]. The results are shown in Fig. 1 and Fig. 2. Since UT-Zappos consists
of less states and objects in Tab. 1, the metrics consist of S, U, H and AUC are more sensitive to α and β, while metrics on
MIT-States are going to be smoother. It can be concluded from the graph that the optimal selection range of α and β is 0 ∼ 1.

0 2 4 6 8 10
0

20

40

60

80

100

%

metrics on UT-Zappos (Closed-World)
AUC
HM
Seen
Unseen

(a) Closed-World (α)

0 2 4 6 8 10
0

20

40

60

80

100

%

metrics on UT-Zappos (Open-World)
AUC
HM
Seen
Unseen

(b) Open-World (α)

0 2 4 6 8 10
0

20

40

60

80

100

%

metrics on UT-Zappos (Closed-World)
AUC
HM
Seen
Unseen

(c) Closed-World (β)

0 2 4 6 8 10
0

20

40

60

80

100

%

metrics on UT-Zappos (Open-World)
AUC
HM
Seen
Unseen

(d) Open-World (β)

Figure 1. Metrics on UT-Zappos with the settings of Closed-World and Open-World.
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Figure 2. Metrics on MIT-States with the settings of Closed-World and Open-World.

4. Pseudocode
We illustrate the core pseudocode in this section, including the decompose and recompose function. Given the pair idx, we

can obtain the att idx and obj idx, which could be utilized to decompose the state feature text att and object feature text obj.
Additionally, the recompose function is reverse to decompose function and the code is shown as Code 1.



1 d e f decompose ( t e x t f e a t u r e , p a i r i d x ) :
2 t , l , c = t e x t f e a t u r e . shape
3 a t t i d x , o b j i d x = p a i r i d x [ : , 0 ] . cpu ( ) . numpy ( ) , p a i r i d x [ : , 1 ] . cpu ( ) . numpy ( )
4 t e x t a t t = t o r c h . z e r o s ( t , s e l f . a t t r i b u t e s , c ) . cuda ( )
5 t e x t o b j = t o r c h . z e r o s ( t , s e l f . c l a s s e s , c ) . cuda ( )
6 f o r i i n r a n g e ( s e l f . a t t r i b u t e s ) :
7 t e x t a t t [ : , i , : ] = t e x t f e a t u r e [ : , np . where ( a t t i d x == i ) [ 0 ] , : ] . mean ( −2)
8 f o r i i n r a n g e ( s e l f . c l a s s e s ) :
9 t e x t o b j [ : , i , : ] = t e x t f e a t u r e [ : , np . where ( o b j i d x == i ) [ 0 ] , : ] . mean ( −2)

10 t e x t f e a t u r e p l u s = t o r c h . c a t ( [ t e x t a t t , t e x t o b j ] , dim =1)
11 r e t u r n t e x t f e a t u r e p l u s
12

13

14 d e f recompose ( t e x t f e a t u r e p l u s , p a i r i d x ) :
15 t , l , c = t e x t f e a t u r e . shape
16 a t t i d x , o b j i d x = p a i r i d x [ : , 0 ] . cpu ( ) . numpy ( ) , p a i r i d x [ : , 1 ] . cpu ( ) . numpy ( )
17 t e x t c o m f e a t u r e = t o r c h . z e r o s ( t , l e n ( i d x ) , c ) . cuda ( )
18 t e x t c o m f e a t u r e = t e x t f e a t u r e [ : , a t t i d x , : ] * t e x t f e a t u r e [ : , o b j i d x + o f f s e t , : ]
19 r e t u r n t e x t f e a t u r e

Code 1: Decompose and Recompose

5. Qualitative Results
We report the top-1 qualitative results in the body of the paper. To better prove the effectiveness of DFSP, we show the top-

3 qualitative results on MIT-States, UT-Zappos and CGQA in this section, which can be seen in Fig. 3. From the prediction
results of top-3, it can be seen that even if top-1 has no successful cases, most of top-3 results can be predicted correctly. The
compositions that the model has not seen can still be predicted correctly, which proves the generalization ability of the model
to unseen concepts. Due to the abstract nature of state, it is more difficult to identify a state than an object, which can be seen
more failure cases in Fig. 3 for states.
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Figure 3. Qualitative top-3 results on MIT -States [2], UT-Zappos [5] and C-GQA [4]. blue denotes the wrong prediction and green
represents the right case. The three columns on the left are success cases, and the two columns on the right are wrong cases for the top-1
prediction.
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