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In this document, we provide more implementation de-
tails, experimental results and analyses to clarify the prop-
erties of LinK.

A. More implementation details and results
A.1. Detection

Training Process Following common practice [2, 7], the
reported validation results are obtained through training
on the train split, and the results on test set are obtaining
through training on the train+val split. The subset for train-
ing (train or train+val) are augmented using the CBGS strat-
egy, which balances the sample distribution. Meanwhile,
a gt-sampling strategy [5] is adopted to enhance object-
level balance during training. Our network are trained with
CBGS+gt-sampling for 15 epochs, and then finetuned by
removing the gt-sampling for extra 5 epochs. Experiences
in previous work indicate that such training policy benefits
from the augmented dataset most while avoids overfitting
the synthetic distribution.

Results The TTA process for nuScenes contains the flipping
and rotation. For flipping, we apply 4 operations: [no flip,
X-axis, y-axis, x-axis+y-axis]. For the rotation, we adopt 7
angles, i.e., [0°, +6.25°, £12.5°, +25°]. Thus there are
total 28 variants for each sample during inference. All the
results for the same sample are reduced by a NMS process.

A.2. Segmentation

Data Augmentation The input for semantic segmentation
is a 4-dimension tensor, consisting of the normalized coor-
dinate of each point and the corresponding LiDAR reflec-
tion intensity. The coordinates are augmented with random
flip along x-aixs or y-axis, random scaling within [0.95,
1.05], and random rotation within [0, 27). For the TTA pro-
cess during inference, we apply the random augmentation
for 12 times and average the results.
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Table 1. Different kernel sizes for segmentation. Without TTA.

r X s | mloU(%)@SemKITTI val
3 X2 66.9
3x3 67.3
3x5 67.5
3xT7 67.2

Table 2. Validation on Waymo Detection. Trained for 6 epochs.
Methods Vehicle Pedestrian  Cyclist | mAPH(%)
CenterPoint 63.4 59.5 66.4 63.4
+LinK (+1.6)65.0 (+0.9)60.4 (+2.0)68.4 | (+1.2)64.6

B. Detailed layer architecture

Both of the segmentation and detection task share the
same encoder design. The encoder starts with a Stem Block
(Conv3 x 3 x 3+BN+ReLU+Conv3 x 3 x 3+BN+ReL.U) and
then appends with 4 downsample+parallel layers (Residual
Branch || LinK Module). Each Residual Branch consists
of two residual blocks. The detailed architecture of each
parallel layer is depicted in Fig 1. For segmentation task,
the hidden dimensions for all the encoder layers are 64. For
the detection, the hidden dimension is [16, 32, 64, 128].

C. Results on more datasets

To further explore the potential of LinK, we conduct ex-
periments on other three benchmarks. For the 3D object de-
tection, we first train the CenterPoint and LinK for 6 epochs
on Waymo Detection [4], the results on validation split are
shown in Table 2. We also train KITTI Detection [3] using
CentePoint-KITTI [6] and LinK under the same settings.
The results is provided in Table 3. The detection results on
the two datasets further demonstrate the effectiveness of our
large kernel design.

For semantic segmentation, we design one more segmen-
tation experiment on nuScenes [1]. According to Table 4,
LinK achieves consistent improvement over the baseline.

D. More ablations

Different kernel sizes in semantic segmentation task.
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Figure 1. The detailed architecture of the encoder layer.

Table 3. Validation on KITTI Detection. (mAP)

Methods Easy Moderate Hard
CenterPoint 71.2 61.7 58.1
+LinK (+1.6)72.8 (+2.1)63.8 (+2.1)60.2

Table 4. Validation on nuScenes Segmentation. (#channel=64,
#epoch=80, bs=16, voxel size=10cm)
Methods | mIoU(%) mAcc(%) oAcc(%)
Mink 74.8 82.3 93.3
+LinK | (+1.6)76.4 (+0.8)83.1 (+0.4)93.7

We report the segmentation results of more kernel sizes in
Table 1 and the performance saturates at 3 x 5.

Mirco-designs in LinK module. The default dilation in
the bypass branch is 1, and we enlarge it to 2 in Table 5. The
comparison implies that there is no need to enlarge the re-
ceptive field of bypass branch. Furthermore, the norm type
in LinK does not have an impact on the segmentation re-
sults.
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Figure 2. Activations in different channels. For (b), the first 32
channels are repeated to serve as 64-channel weights. The latter 32
channels for the Group Sharing does not participate in any forward
or backward process.
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Table 5. Mirco-designs. Validate on val@ SemanticKITTI.

b.ypa.iss mloU mAcc form
dilation type
1 67.5 747 ||LayerNorm 67.5 74.7

2 66.3 729 ||BatchNorm 67.8 74.6

mloU mAcc

E. Visualizations
E.1. Kernel weight Distributions

Channel Distribution To explore the effect of the group
sharing strategy, we analyze the weight distribution in chan-
nel dimension. According to Fig 2, before adopting the
Group Sharing strategy, the low-level channels are opti-
mized insufficiently, since the variations among channels
are very small. After adopting the Group Sharing policy,
the low-level channel are activated significantly, which ver-
ifies the effectiveness of Group Sharing.

Spatial Distribution This part introduces the effect of the
Learnable Frequency strategy. According to the Fig 3, the
original kernel shows poor spatial inductive bias since it
cannot distinguish the symmetric locations. And the Learn-
able Frequency enhances the spatial bias in the generated
kernels.
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Figure 3. Spatial distribution of activations. We illustrate the acti-
vation from X-axis, Y-axis, and Z-axis.

(a) Baseline

(b) LinK

Figure 4. Detection results on nuScenes. Blue and green box are
predictions and ground truth, respectively. LinK improves those
remote and sparse objects in scenes. Better viewed in color and
using zoom.

E.2. More qualitative results

We provide more detection results in Fig 4 and more seg-
mentation results in Fig 5 to show our improvement com-
pared to the baseline. The sparse areas are sensitive to the
noise, making the prediction unreliable. LinK improves this
issue by introducing wider-range context to enhance the ro-
bustness. And the larger receptive field in LinK is more
friendly to the large object.
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(a) Baseline
Figure 5. Error map of the segmentation in SemanticKITTI. Red
point denote false prediction.

(b) LinK
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