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In the following supplementary material, we first present
additional analysis of our model experimentally in Sect. 1.
Sect. 2 provides more detailed results. Then, in Sect. 3, we
visualize how the SVI in our model works with large-scale
data. Following this, more experimental details and results
of feature matching are provided in Sect. 4. Finally, Sect. 5
gives the detailed derivations of the formulas in our model.

1. Additional Analyses
1.1. Number of Inducing Variables

We change the number of inducing variables and mea-
sure the moments-matching divergence KL(p(f∗|D)||q(f∗))
between the true test posterior p(f∗|D) and the approximate
test posterior q(f∗) on Neal data with 100 inliers and 100
outliers. Fig. S1 shows the KL divergence as the number
of inducing variables increases. As we can see, our model
is able to match the true exact GP model when the number
of inducing variables is more than 15. This is because our
model akin to the work of VFE [7] approximates the pos-
terior rigiously, while maintaining high robustness to out-
liers. This provides a great convenience for speeding up our
model without losing regression performance.

Figure S1. KL divergence between the true test posterior and the
approximate test posterior of our model as the number of inducing
variables increases.

1.2. Impact of Outlier Ratio

To further measure the robustness of our method to out-
liers, we fix the inlier number to 100 with varing outlier ra-
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tios, and measure the KL divergence mentioned above. The
baseline GPR-VFE [7] is included for comparison and the
results are reported in Fig. S2, where the median and stan-
dard error bars are calculated by repeating the experiment
10 times. From the results, we find that our model almost
always gives a perfect match to the true posterior when the
outlier ratios are below 60%. The overfitting of our model
starts to emerge slightly only when the outlier ratios reach
80%. In such high outlier ratio case, numerous outliers af-
fect the posterior variance of our model, thus judging some
outliers that agree with the posterior mean as inliers. We
note that when facing massive outliers (e.g., 80%), the pos-
terior mean provided by our model is still accurate, and only
the posterior variance is slightly affected by the outliers.

Figure S2. KL divergence as the outlier ratio grows for our model
and GPR-VFE.

1.3. Non-uniform Outliers

We inject mixture Gaussian, independent Gaussian, and
two types of structured outliers on Neal (Fig. 7 in the
main paper), and show the mean and standard deviation in
Tab. S1.

2. Detailed Results
We provide a more detailed results on Neal data with dif-

ferent outlier ratios in Tab. S2, where the standard deviation
and KL divergence between the true test posterior and the
approximate test posterior are reported. As we can see, our
method always has the best results. This superiority is even
more evident on KL, as our method fits the posterior mean
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Table S1. Results of injecting different non-uniform outliers. Bold
indicates the best.

Method Mixture Gaussian Independent Gaussian
MAE KL MAE KL

GPR-VFE 0.467±0.122 7.683±4.695 0.971±0.082 2.403±0.172
GPR-St 0.278±0.619 6.839±50.594 0.248±0.487 0.512±0.184
GPR-Lap 0.082±0.048 3.827±4.145 0.314±0.167 1.674±0.214
GPR-MEM 0.068±0.057 6.420±1.232 0.918±0.323 2.334±0.656
Ours 0.027±0.022 0.068±0.141 0.026±0.009 0.027±0.020

Method Structured #1 Structured #2
MAE KL MAE KL

GPR-VFE 1.099±0.403 457.143±416.136 1.140±0.059 3.356±0.316
GPR-St 0.176±0.445 28.174±78.706 0.479±0.647 0.543±0.216
GPR-Lap 0.164±0.170 304.562±314.627 0.392±0.167 2.114±0.564
GPR-MEM 0.098±0.080 5.458±1.546 1.172±0.072 3.245±0.335
Ours 0.023±0.006 0.022±0.022 0.021±0.005 0.018±0.006

Table S2. Detailed results on Neal data with different outlier ratios.
Bold indicates the best.

Neal

Method 10% 50% 80%
MAE KL MAE KL MAE KL

GPR-VFE 0.189±0.210 1.396±0.750 0.583±0.089 2.347±0.204 0.757±0.113 3.867±0.273
GPR-St 0.036±0.080 0.741±0.354 0.092±0.799 1.508±1.159 0.773±0.101 4.077±0.443
GPR-Lap 0.031±0.009 6.770±15.891 0.426±0.019 1.730±0.200 0.350±0.043 3.945±0.852
GPR-MEM 0.043±0.057 2.030±1.308 0.064±0.010 7.227±2.286 0.774±0.086 4.057±0.306
Ours 0.012±0.008 0.001±0.138 0.026±0.007 0.231±0.169 0.032±0.012 0.753±0.700

and variance very well.

3. Visual Illustration of SVI

Stochastic variational inference (SVI) can dramatically
improve the speed of our model without losing much per-
formance. Fig. S3 visualize the intermediate results of the
optimization process on Neal data, where the top group con-
tains 1667 data points with 40% outliers and the bottom
contains 3334 data points with 70% outliers. In each plot of
the figure showing the optimization process, we only show
the currently processed mini-batch data. We also visualize
the field of p, which indicates the inlier probability at any
location. The deeper the blue color, the higher the proba-
bility. With SVI, we see our model gradually converges to
the correct result. It enables our model embrace large-scale
data as it is easier to calculate the natural gradient for mini
batch than traversing the whole training data.

4. Details of Feature Matching

4.1. Datasets

YFCC100M: The Yahoo’s YFCC100M dataset [6] col-
lected 100 million photos from Internet and was later orga-
nized into 72 scenes reconstructed with the Structure from
Motion software VisualSfM, providing bundle adjusted
camera poses, intrinsics and triangulated point clouds. Fol-
lowing [9], 4 sequences (i.e., Buckingham palace, Sacre
coeur, Reichstag, and Notre dame front facade) are set as
our test set, which contains 4000 image pairs in total. [3] is
used to recover the camera poses and generate ground truth.

Figure S3. Illustration of SVI in our model for robust Gaussian
process regression. The training data in the top group includes
1667 data points with 40% outliers and the bottom contains 3334
data points with 70% outliers. The field of p is also visualized and
represented by the shades of blue.

HPatches: The HPatches benchmark contains 116 scenes
with 696 unique pictures, where the first 57 scenes are taken
under different illumination and the remaining 59 scenes
undergo viewpoint changes. Each scene contains one ref-
erence image and five target images with ground-truth ho-
mography provided for each target image. The SIFT [4] and
HardNet [5] are used to detect feature points and generate
descriptors, respectively.
CPC: The Community Photo Collection (CPC) dataset [8]
includes unstructured images of landmarks collected from
Flicker, where the image pairs are wide-baseline with dif-
ferent resolutions. 1000 image pairs are selected from the
dataset for testing with ground-truth fundamental matrix
available.

4.2. Evaluation Metrics

Precision is defined as the ratio of the true inliers among
those preserved “inlier” by a matching algorithm. Recall is
defined as the percentage of preserved true inliers among
the whole inliers contained in the original putative set. And
F1-score is defined as the ratio of 2×Precision×Recall and
Precision + Recall.

Normalized symmetric geometry distance (NSGD) is
computed as the SGD (in pixels) divided by the length of
image diagonals [1], where SGD compares the estimated
fundamental matrix with the ground-truth fundamental ma-
trix by iteratively generating points on the borders of the
images, and then measuring the epipolar distances. The ho-
mography error metric defined in SuperPoint [2] compares
the estimated homography with the ground-truth homogra-
phy using the corners of images.



Figure S4. Additional qualitative illustration of our model on fea-
ture matching. The test scenarios come from YFCC100M. We
show the true positive in blue and false positive in red. For visibil-
ity, in the image pairs, at most 500 randomly selected matches are
presented. Best viewed in color.

4.3. Details of Incorporating Ratio Information

The ratio information is a by-product of nearest neigh-
bor matching. It is the ratio of the descriptors distance
of the nearest to the second nearest neighbor. If the ra-
tio is small, it means that the correspondence is well dif-
ferentiated, and it is more likely to be an inlier, and vice
versa. Previous works simply use a user-defined thresh-
old to pre-reject some outliers, called “ratio test”, which
significantly reduces the proportion of outliers but also re-
moves many inliers. Here we integrate the ratio scores into
our model as a prior which is expressed as p(zi = 1) =
γ · max{1, 1

ri
− 0.5}, where ri ∈ [0, 1] denotes the ratio

scores. Compared to simple ratio test, our incorporation of
ratio information is more theoretically sound and does not
lose inliers.

4.4. More Qualitative Illustration

Fig. S4 shows additional qualitative illustrations of
our model in default setting on YFCC100M dataset with
RANSAC method as a baseline competitor. The F1-score
and running time are also reported for each scenario. As we

can see, our model takes only a few milliseconds and has al-
most no mismatches. It demonstrates extremely high speed
and robustness.

5. Derivation Details

5.1. Preliminaries of Gaussian Integrals

Two Gaussians∫
Rk

N (x|a,A)N (a|b,B)da = N (x|b,A + B) (S1)

Quadratic forms∫
Rk

(x− c)>A(x− c)N (x|µ,Σ)dx =

(µ− c)>A(µ− c) + tr(AΣ)

(S2)

5.2. Derivation on q1

Given q2, q3, and q4, and denote pi = E[zi] and P =
diag(p1, p2, · · · , pn). Eq. (11) turns to

L =

∫
q1q2−4 log (p(fm)p(y,Z|f)) dfdfmdθ

−
∫
q1 log φ(fm)dfdfm + const.

=

∫
p(f |fm)φ(fm)Eq2−4

[log (p(fm)p(y,Z|f))]dfdfm

−
∫
p(f |fm)φ(fm) log φ(fm)dfdfm + const.

(S3)
Focus on the term Eq2−4 [log (p(fm)p(y,Z|f))], we obtain

Eq2−4
[log (p(fm)p(y,Z|f))] = log p(fm|Xm,ϕ)

+

n∑
i=1

(
(1− pi) log

〈1− γ〉
a

+ pi log
(
〈γ〉N (yi|fi, σ2)

))

= logN (fm|0,Kmm) +

n∑
i=1

pi logN (yi|fi, σ2) + const.,

where 〈γ〉 = exp(E[log γ]) and 〈1 − γ〉 = exp(E[log(1 −
γ)]). Next, we integrate over f , Eq. (S3) becomes

L =

∫
φ(fm)

∫
p(f |fm)

(
n∑

i=1

pi logN (yi|fi, σ2)

)
dfdfm

+

∫
φ(fm) logN (fm|0,Kmm)dfm

−
∫
φ(fm) log φ(fm)dfm + const.,

(S4)



where∫
p(f |fm)

(
n∑

i=1

pi logN (yi|fi, σ2)

)
df

∼
∫
N (f |KnmK−1mmfm,Kf |fm)

(
−1

2
(f − y)>σ−2P(f − y)

)
∼− 1

2

(
KnmK−1mmfm − y

)>
σ−2P

(
KnmK−1mmfm − y

)
− 1

2σ2
tr(PKf |fm)

∼ logN (y|µf |fm , σ
2P−1)− 1

2σ2
tr(PKf |fm) := logQ(fm,y).

Note that we use ∼ to represent equality plus an irrelevant
constant term. Eq. (S4) then turns to

L =

∫
φ(fm) log

(
p(fm)Q(fm,y)

φ(fm)

)
dfm + const.,

which corresponds to the Eq. (12) in the main paper. Thus,
the optimal φ̂(fm) is given as follows

logφ̂(fm) ∝ log (p(fm)Q(fm,y))

∼ logN (fm|0,Kmm) + logN (y|µf |fm , σ
2P−1)

∼− 1

2

{
f>mK−1mmfm + (y − µf |fm)>σ−2P(y − µf |fm)

}
∼− 1

2

(
fm − σ−2AmK−1mmKmnPy

)>
A−1m(

fm − σ−2AmK−1mmKmnPy
)

∼ logN (fm|σ−2AmK−1mmKmnPy,Am),

where Am =
(
K−1mm + σ−2K−1mmKmnPKnmK−1mm

)−1
and can be simplified to KmmΣKmm, and Σ = (Kmm +

σ−2KmnPKnm)−1. Thus, the optimal φ̂(fm) is a multi-
variate Gaussian distribution

φ̂(fm) ∼ N (fm|µm,Am),

where µm = σ−2KmmΣKmnPy, which corresponds to
the Eq. (14) in the main paper.

After obtaining the optimal φ̂(fm), we can recover q(f)
by marginalizing out fm using Eq. (S2):

q(f) ∼
∫
p(f |fm)φ(fm)dfm

∼
∫
N (f |µf |fm ,Kf |fm)N (fm|µm,Am)dfm

∼
∫
N (f |µf |fm ,Kf |fm)N (µf |fm |µf ,KnmΣKmn)dµf |fm

=N (f |µf ,A),

where µf = KnmK−1mmµm and A=Kf |fm +KnmΣKmn.

5.3. Derivation on Remark 1

With the optimal φ̂(fm), we expand E[logN (y|f , σ2I)]
and as follows

E[logN (y|f , σ2I)]

=

∫
p(f |fm)φ̂(fm) logN (y|f , σ2I)dfdfm

=

∫
N (f |µf ,A) logN (y|f , σ2I)df

=− 1

2
log 2π − 1

2
log |σ2I|

− 1

2σ2

∫
N (f |µf ,A)(y − f)>(y − f)df .

Utilize Eq. (S2), it becomes

E[logN (y|f , σ2I)]

=− 1

2
log 2π − 1

2
log |σ2I|

− 1

2σ2
(y − µf )

>(y − µf )−
1

2σ2
tr(A)

= logN (y|µf , σ
2I)− 1

2σ2
tr(A)

=

n∑
i=1

(
logN (yi|µfi, σ

2)− 1

2σ2
Aii

)

=

n∑
i=1

E[logN (yi|fi, σ2)].

Therefore, we obtain

〈Ni〉 = N (yi|µfi, σ
2) exp(− 1

2σ2
Aii),

which recovers the Eq. (15) in the main paper.

5.4. Derivation on q2

Suppose q1, q3, and q4 are given and note n̂ = tr(P).
Using Eq. (10) and focusing on the terms involving γ, we
obtain

log q̂2(γ) ∼ log p(γ) +

n∑
i=1

((1− pi) log(1− γ) + pi log γ)

∼ log γBa+n̂−1 + log(1− γ)Bb+n−n̂−1.

Taking the exponential of both sides and normalizing, the
q̂2(γ) follows a Beta distribution:

q̂2(γ) = Beta(γ|Ba + n̂, Bb + n− n̂).

5.5. Derivation on q3

Given q1, q2, and q4, according to Eq. (10), we obtain

log q̂3(Z) =

n∑
i=1

(
(1− zi) log

〈1− γ〉
a

+ zi log (〈γ〉〈Ni〉)
)



We see that q̂3(Z) can be further factorized into q̂3(Z) =∏n
i=1 q̂

[i]
3 (zi). Considering q̂[i]3 (zi) and taking the exponen-

tial of both sides, we have

q̂
[i]
3 (zi) ∝ {〈1− γ〉/a}1−zi {〈γ〉〈Ni〉}zi . (S5)

As zi ∈ {0, 1} is a binary indicator variable, the normaliza-
tion constant of q̂[i]3 (zi) is simply obtained by the summa-
tion for zi

〈1− γ〉/a+ 〈γ〉〈Ni〉.

Thus, after normalization, q̂[i]3 (zi) has the following form

q̂
[i]
3 (zi) = (1− pi)1−zipzii ,

where

pi =
〈γ〉〈Ni〉

〈1− γ〉/a+ 〈γ〉〈Ni〉
.

Note that the normalization constant is divided into each
term of Eq. (S5). This is because zi is a binary variable and
only one term has a non-zero value.

5.6. Derivation on q4

Given q1, q2, and q3, since q4(σ
2,ϕ,Xm) obeys the

Dirac delta distribution, we directly maximize the lower
bound Eq. (11) with respect to (σ2,ϕ,Xm).

First we consider σ2. The lower bound Eq. (11) becomes

L ∼
∫
p(f |fm)φ(fm)

(
n∑

i=1

pi logN (yi|fi, σ2)

)
dfdfm

∼
∫
N (f |µf ,A)

(
n∑

i=1

pi logN (yi|fi, σ2)

)
df

∼− 1

2σ2

∫
N (f |µf ,A)(y − f)>P(y − f)df

− 1

2
log σ2

n∑
i=1

pi

Taking derivative with respect to σ2 and setting it to zero,
we obtain a closed-form expression (i.e., Eq. (20) in the
main paper) using Eq. (S2) :

σ̂2 =
1

n̂

∫
N (f |µf ,A)(y − f)>P(y − f)df

=
1

n̂
(y − µf )

>P(y − µf ) +
1

n̂
tr(PA).

Next, we focus on the remaining hyperparameters
(ϕ,Xm). Using the reverse Jensen’s inequality and

Eq. (S1), we recover the Eq. (21) in the main paper:

L ∼
∫
φ(fm) log

(
p(fm)Q(fm,y)

φ(fm)

)
dfm

≥ log

∫
H
HHφ(fm)

p(fm)Q(fm,y)
HHHφ(fm)

dfm

= log

∫
N (y|µf |fm , σ

2P−1)N (fm|0,Kmm)dfm

− 1

2σ2
tr(PKf |fm)

∼ log

∫
N (y|µf |fm , σ

2P−1)

N (µf |fm |0,KnmK−1mmKmn)dµf |fm −
1

2σ2
tr(PKf |fm)

= logN (y|0,Ky)−
1

2σ2
tr(PKf |fm) := L2.

The partial derivatives of L2 with respect to (ϕ,Xm) is

∂

∂θ
L2 =

1

2
tr
(
(αα> −K−1y )

∂Ky

∂θ

)
− 1

2σ2
tr(P

∂Kf |fm
∂θ

),

where α = K−1y y.
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