Uncertainty-Aware Optimal Transport for
Semantically Coherent Out-of-Distribution Detection
(Supplementary Materials)

Appendix
A. Experiment Details

The ResNet-18 [1] is employed as the backbone for all
experiments, which is trained by an SGD optimizer with a
weight decay of 0.0005 and a momentum of 0.9. We use the
cosine annealing learning rate starting at 0.1, taking totally
180 epochs. Two dataloaders are prepared with batch-
size of 64 and 128 for Dy, and Dy, respectively. For the
objective of training is denoted as:
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where we set v = 0.5 and A = 0.3 for all experiments.
The number of cluster K for CIFAR-10/100 benchmark is
1024/2048.

B. Discussion of Training Process

In summary, we alternate the following two steps
throughout the training process:

1: Representation learning. Given the updated Df) and

Dg ) based on the assignment matrix Q, the model is trained
with Eq. (1) including the inter-cluster extension strategy
L), to obtain a discriminative representation between each
ID class and OOD class.

2: Optimizing label assignment. We fix the parameters of
the model, and use the model to estimate the energy-based
transport cost in the proposed energy-based transport (ET)
mechanism. Then we employ the ET to assign correct labels
to unlabeled ID samples as many as possible to optimize the
assignment matrix Q with the guidance of the energy-based
transport cost.

Notably, the ET is performed at the beginning of the
training. Limited by the representation not strong at this
stage, the energy metric may not reflect the discrepancy
in ID/OOD, thus providing ineffective guidance or even
accumulating errors. To explore this doubt, we trained the
model only using Eq. (1) for the firstly and performed the
above two steps alternately at the remaining epochs, and
then evaluated these strategies in Tab. 1. Results show
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Figure 1. The number of accurately assigned labels during
training in the three experiments in Tab. 1 shows that our
method significantly improves over the other two strategies in
assigning exact labels to unlabeled ID samples.'SOET’ denotes
the model performs the two steps mentioned in Appendix B
alternately only for the last 50 epochs, while ‘150ET’ alternates
the two steps for the last 150 epochs. ‘Ours’ means our method
which alternates the two steps throughout the training process.

that our method obtains consistently best results across all
metrics, which means that performing ET during the whole
training process can more fully learn the discrepancy in
ID/OOD. In Fig. | we also report the comparison among
the three experiments above in the number of accurately
assigned labels. It can be seen that our method no matter
at which epoch can allocate more accurate labels than
‘SOET’ and ‘150ET’, so the ID semantic knowledge hidden
in unlabeled set mined by ET at the first few epochs is
beneficial to the subsequent training, and the strategy which
our method adopts ultimately converges and works.

C. Effectiveness of the L,

The inter-cluster extension strategy (L..,) enhances the
global feature representation mixed with ID and OOD
samples and then the enhanced representation will be
mapped into a more discriminate logit space. The energy
metrics produced in this space can better reflect the ID/OOD
differences to more effectively guide the cluster distribution
of ID/OOD samples. In Fig. 2, we use TSNE [8] to visualize
the learned feature representation and compare the energy
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Figure 2. Comparison of feature representations and the

energy metric introduced in the ET between using L., and
without L,.,. L, not only produces more distinguishable and
compact representations, but more importantly, energy metric that
reflects ID/OOD difterences more significantly can be obtained.
From the statistical histogram, it can be seen that when L. is
used, the energy of OOD samples is concentrated at the minimum
value and has little overlap with the distribution of ID. These OOD
samples will be forced to be uniformly distributed over all clusters
in ET. TIN denotes the Tiny-ImageNet dataset.

Table 1. Comparison between different strategies of training
process. ‘S0ET’ denotes the model is trained only with Eq. (1)
for the first 130 epochs and performed the two steps mentioned in
Appendix B alternately for the last 50 epochs. While ‘150ET’ uses
Eq. (1) for training for the first 30 epochs, and performs the two
steps alternately for the last 150 epochs. ‘Ours’ means our method
which alternates the two steps throughout the training process. 17/J.
indicates higher/lower value is better. The best results are in bold.

Strategy | FPR9S |  AUROC f

S0ET 13.54 93.54
150ET 11.83 96.19
Ours 8.53 96.47

AUPR-In/Out t | ACC 1

94.72/93.53 | 91.97
95.86/94.22 | 92.87
97.10/95.65 | 93.71

metric of ID/OOD in training set with or without L,..;,. This
figure demonstrates the contribution of L., to the ability of
energy metric in the ET to reflect the discrepancy between
ID and OOD. Benefiting from the effective guidance of
this energy metric for samples with different semantics,
Lyep ultimately further facilitates ET to explore semantic
knowledge hidden in the unlabeled set and improve the
performance of the model.

A Cluster Dominated

A Cluster Dominated
Dog’ by ‘Automobile(Auto)’

by *
Dog:78% Dog:42% Dog:69% Auto:72% Auto:63% Auto:69%
. " [ -
K L - n
‘ilj ﬁ
o ic| %

Cat(Dog):61% Dog:83% Auto:32% Auto:29%

o3
80)

Dog:49% Dog:88%
.

Figure 3. Visualization of the proposed ET. We show partial
samples from two clusters where the proportion of “Dog” and
” Automobile” classes exceed 75%, respectively. The predicted
labels and the corresponding prediction probability produced by
the model are noted above each image. The red predicted label
means that the model classifies the image into a wrong class,
and its ground-truth label is in parentheses. The images with
blue edges are from the unlabeled Tiny-ImageNet dataset, and
the other are from CIFAR-10. The visualization shows that our
ET is capable of assigning correct semantic labels to unlabeled
ID samples incorrectly predicted by the model or with low
confidence.
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D. Visualization of the ET

Considering the overconfident prediction of deep neural
network models on OOD inputs revealed in [6,7], we cannot
assign labels to unlabeled samples relying on the predicted
results of the network. Moreover, in the experiment we
found that the network will predict the ID samples into
wrong classes or output insignificant confidence (softmax
probability) on the correct classes. We demonstrate the
superiority of the proposed ET in assigning accurate labels
through the visualization in Fig. 3, it can be seen from where
that our ET can collect unlabeled ID images in a correct
manner. This strategy splits the ID samples incorrectly
predicted by the model (refer to the two images being
predicted into ‘cat’ and ‘truck’) or with low confidence
(around 30%) from the unlabeled set, and allocate accurate
labels to them. It is also noted that a few OOD samples
(such as the ‘bear’ image in Fig. 3 being predicted into ‘dog’
with overconfidence) are mixed, but it will be corrected at
next epochs. To sum up, the proposed ET dramatically
improves the reliability of the model in OOD detection
tasks, and finally makes our method converge.

E. Choice of hyper-parameters.

Here we analyze the impact of the main hyper-
parameters including the threshold of class proportion
7, clusters numbers K, and temperature value 7', and
prove the robustness of the proposed method. Fig. 4a
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Figure 4. Discuss about hyper-parameters. (a), (b), and (c) respectively demonstrate the impact of the threshold of class proportion
7, clusters numbers K, and temperature value 7" on the performance of our method. All the performance fluctuation is very small when
72> 0.7, K > 800 and T" > 750, showing the robustness of our method.

Table 2. Comparison between the previous SOTA methods and ours on a large-scale benchmark. Our method obtains the best results
across almost all OOD detection metrics. 1/] indicates higher/lower value is better and the best results are in bold.

ID data Method ‘ FPR95 | AUROC 1 AUPR-In/Out 1 ‘ CCR@FPR T
\ | 100* 107* 107* 107"
ODIN [4] 80.07 51.23 56.93/50.46 0.06 1.18 8.42 13.36
EBO [5] 82.77 50.17 55.31/49.84 0.49 1.49 8.87 13.59
100 classes from OE [3] 80.52 55.87 55.93/51.94 1.06 2.63 7.67 15.13
ImageNet MCD [10] 91.04 52.26 54.80/43.92 0.08 1.92 5.57 14.35
UDG [9] 81.39 54.74 57.85/52.53 0.95 2.06 9.18 16.35
Ours 60.17 63.91 69.55/58.23 1.08 2.16 10.56  21.34

shows that the maximum fluctuation is 0.38%/0.25%
on FPR@95/AUROC when 7=0.7-0.9, and Fig. 4b in-
dicates when K=800-1200, the maximum fluctuation is
0.58%/0.27% on FPR@95/AUROC. We choose 7=0.8 and
K=1024 following [9] in the paper for fair comparisons.
During rebuttal, we added the experiment shown in Fig. 4c
and demonstrate the results are insensitive to large temper-
ature values 7' (e.g., > 750). The best 7" is around 750 but
we also achieve good results when choosing 7'=1000 in the

paper.

F. Experiments on large-scale datasets.

To evaluate the generalization of our method in realistic
scenarios, we extend it to large-scale datasets. Specially,
we choose 50,000 samples from 100 classes in ImageNet
as labeled ID training set Dy, and still use Tiny-ImageNet
as the unlabeled training set Dy mixed with ID and OOD
data. The testing set T' contains 1,000 ID images and
4,000 OOD images from ImageNet. The comparison results
in Tab. 2 demonstrate that our proposed uncertainty-aware
optimal transport scheme obtains the best results on almost
all metrics, indicating its generalization on large-scale
datasets. However, all methods in Tab. 2 exhibit significant
performance degradation on the large-scale datasets, which
suggests that more effort is needed to address the challenges
presented by benchmarks with more diverse categories and

higher resolution in the OOD detection area.

G. Detailed Results and More Architectures

Tab. 3 and Tab. 5 show the detailed results among all
datasets. Our method obtains consistently better results
across all OOD detection metrics and all datasets. Com-
pared with other methods using extra OOD training data
(MCD [10], OE [3], UDG [9]), our method boosts the OOD
detection performance meanwhile maximally maintaining
the ID classification performance and achieves the best
results on ACC. Following [9] we also adopt another net-
work architecture of WideResNet-28 [2] to do experiments
in Tab. 4 and Tab. 6 and compare the performance. The
comparison results on WideResNet-28 have the same trend
as that on ResNet-18 [1] architecture. Our proposed method
combining ET with L,., has advantages on almost all
metrics, showing that our method enhances both the OOD
detection and the ID classification ability. Notably, the
previous state-of-the-art approaches generally performed
well on SVHN and Texture datasets, but in Tiny-ImageNet,
LSUN, and Places365 suffered a defeat. It can be explained
that the images in the first two datasets have relatively flat
backgrounds, which are quite different in style from those
in CIFAR10/100, and the resulting covariate shifts make it
easier for the model to identify them as OOD examples.
Our proposed method especially achieves performance ad-



Table 3. Detailed results on CIFAR-10 benchmark using ResNet-18. Our method obtains consistently better results across almost
all OOD detection metrics and all datasets. ACC shows the classification accuracy on all the ID test samples from 7. 1/] indicates
higher/lower value is better.

Method ‘ Dataset ‘ FPR95 | AUROC?T AUPRIn/Out)t ‘ CCROFPR 1 ‘ ACC 1
| 107* 1073 1072 107! |

Mean 73.02 83.89 83.39
Texture 51.17 89.56 93.79

80.53 541 1230 28.02 62.02 | 89.68

81.88 6.58 11.80 2799 71.13 | 91.87

SVHN 20.88 96.43 93.62 / 9832 | 32.72 4733 6720 86.75 | 91.87
CIFAR-100 58.54 86.22 86.17 / 84.88 3.64 655 19.04 o6l1.11 | 91.87
OE Tiny-ImageNet 58.98 87.65 90.9 / 82.16 1437 18.84 33.65 66.03 | 89.27

Texture 42.52 8406  86.01 /8073 | 002 0.8 371 40.14 | 95.02
SVHN 52.27 8326 6376 /92.60 | 1.01 400 11.82 44.85 | 95.02
CIFAR-100 | 5634 7840  7321/8099 | 0.10 038 443 30.11 | 95.02
ODIN | Tiny-ImageNet | 59.09  79.69 7934 /77.52 | 036 0.63 449 3452 | 92.54
LSUN 47.85 8456  81.56 /8558 | 021 085 9.92 4695 | 95.02
Places365 53.94 8201 549279330 | 047 168 7.3 39.63 | 93.87
Mean 5200 8200 7313 /8512 | 036 129 692 3937 | 94.42
Texture 52.11 80.70  83.34 /7520 | 001 013 279 3196 | 95.02
SVHN 30.56 9208 80.95/9628 | 185 574 2144 7581 | 95.02
CIFAR-100 | 5698  79.65 7509 /8123 | 0.0 069 474 3428 | 9502
EBO | Tiny-ImageNet | 57.81 81.65  81.80 / 7875 | 033 095 601 4040 | 92.54
LSUN 50.56 85.04  82.80 /8529 | 024 196 1135 5043 | 95.02
Places365 52.16 83.86 5896 /9390 | 039 211 838 46.00 | 93.87
Mean | 50.03 8383  77.15/8511 | 049 193 9.2 4648 | 94.42
Texture 83.92 81.59  90.20 / 6327 | 497 1051 29.52 62.10 | 90.56
SVHN 60.27 89.78  85.33 / 9425 |20.05 3823 5543 7401 | 90.56
CIFAR-100 | 7400 8278 8397 /79.16 | 080 499 18.88 58.18 | 90.56
MCD | Tiny-ImageNet | 78.89 8098  85.63 /7248 | 162 415 1937 56.08 | 87.33
LSUN 68.96 8471 8574 /8150 | 175 793 21.88 6154 | 90.56
Places365 72.08 8351  69.44 /9252 | 329 797 23.07 60.22 | 885l
/
/
/
/

LSUN 57.97 86.75 87.69 / 85.07 11.8 19.62 2922 6195 | 91.87

Places365 55.64 87.00 73.11 / 94.67 | 11.36 1736 2633 62.23 | 90.99

Mean 50.53 88.93 87.55 / 87.83 | 1341 20.25 3391 68.20 | 91.29

Texture 20.43 96.44 98.12 / 92.91 1990 4333 69.19 87.71 | 92.94

SVHN 13.26 97.49 95.66 / 98.69 | 36.64 56.81 76.77 89.54 | 92.94

CIFAR-100 47.20 90.98 91.74 / 89.36 1.50 1094 40.34 75.89 | 92.94

UDG | Tiny-ImageNet 50.18 91.91 94.43 / 86.99 032 2315 5396 78.36 | 90.22
LSUN 42.05 93.21 94.53 / 91.03 | 1426 37.59 60.62 81.69 | 92.94

Places365 44.22 92.64 87.17 /1 96.66 | 10.62 35.05 5896 79.63 | 91.68

Mean 36.22 93.78 93.61 / 92.61 | 13.87 3448 59.97 82.14 | 92.28

Texture 0.78 98.92 99.55 / 97.73 | 49.52 72.02 87.65 91.10 | 94.66

SVHN 0.26 99.03 98.79 / 9991 | 64.87 8296 91.10 93.44 | 94.66

CIFAR-100 29.17 91.17 92.04 / 90.02 3.16 14.07 3489 72.02 | 94.66

Ours Tiny-ImageNet 7.15 94.15 97.17 / 88.57 | 64.27 7825 8140 84.20 | 90.41
LSUN 0.53 98.93 99.28 / 9891 | 34.88 77.74 87.65 91.10 | 94.66

Places365 13.26 96.61 95.71 / 98.78 | 25.16 58.64 81.40 85.79 | 93.23
Mean 8.53 96.47 97.10/95.65 40.31 6395 7735 86.27 | 93.71




Table 4. Detailed results on CIFAR-10 benchmark using WideResNet-28. Our method obtains consistently better results across almost
all OOD detection metrics and all datasets. ACC shows the classification accuracy on all the ID test samples from 7. 1/] indicates
higher/lower value is better.

CCR@FPR 1

Method ‘ Dataset ‘ FPR95 | AUROC?T AUPR(In/Out) T ‘ ‘ ACC 1

| | | 107* 107 107* 107! |
Texture 47.50 81.23 82.94 /7825 | 000 0.00 1.81 32.69 | 96.08
SVHN 51.17 85.36 68.02 /9353 | 1.10 3.54 13.08 53.04 | 96.08
CIFAR-100 52.92 79.47 73.57 / 8259 | 000 036 3.97 3055 | 96.08
ODIN | Tiny-ImageNet | 54.86 80.39 78.82 /7948 | 001 036 3.2 33.69 | 93.69
LSUN 46.53 81.86 7570 / 85.03 | 025 0.68 391 33.49 | 96.08
Places365 49.03 81.49 49.84 /1 93.60 | 0.04 055 372 33.14 | 95.02
Mean 50.33 81.63 7148 / 8541 | 023 091 494 3610 | 9551
Texture 40.44 89.55 91.16 / 8441 | 000 000 541 7135 | 96.08
SVHN 16.13 96.90 93.77 / 9847 | 293 1826 6848 91.28 | 96.08
CIFAR-100 42.41 88.97 8573 / 89.42 | 001 072 877 67.94| 96.08
EBO | Tiny-ImageNet | 45.81 89.55 89.55 / 86.72 | 0.03 0.61 993 7379 | 93.69
LSUN 37.14 90.58 8747 /9107 | 029 083 851 7621 | 96.08
Places365 39.84 89.86 68.32 /9633 | 0.04 068 7.15 7324 | 95.02
Mean | 36.96 90.90 86.00 / 91.07 | 0.55 3.52 18.04 75.64 | 95.51
Texture 93.19 70.58 8249 / 49.12 | 000 0.15 7.65 4496 | 87.85
SVHN 88.68 81.37 7443 / 8675 | 328 8.65 2828 66.86 | 87.85
CIFAR-100 83.29 76.58 7717 / 7250 | 0.03 072 1047 4536 | 87.85
MCD | Tiny-ImageNet |  86.6 74.83 80.53 / 6430 | 0.04 248 12.88 44.47 | 8558
LSUN 93.06 70.14 7262/ 6338 | 055 281 1051 36.16 | 87.85
Places365 93.13 70.42 49.04 / 8432 | 0.10 239 9.65 3637 | 86.48
Mean 89.66 73.99 7271 / 7006 | 0.67 2.87 1324 457 | 87.24
Texture 35.14 92.44 9527 / 8717 | 527 894 31.17 79.23 | 94.95
SVHN 22.94 96.23 94.14 / 9778 | 3734 5279 73.87 88.74 | 94.95
CIFAR-100 52.99 87.17 86.80 / 86.09 | 1.72  6.83 21.22 63.16 | 94.95
OE | Tiny-ImageNet | 55.53 87.43 90.20 / 8258 | 4.58 1391 28.61 64.92 | 92.72
LSUN 59.69 85.56 86.18 / 83.67 | 518 11.55 26.09 58.88 | 94.95
Places365 55.30 85.75 69.15 / 9425 | 450 1031 2242 56.79 | 94.24
Mean 46.93 89.10 86.96 / 88.59 | 9.76 17.39 33.90 68.62 | 94.46
Texture 22.59 95.86 9749 /9259 | 087 892 58.06 87.56 | 94.50
SVHN 17.23 97.23 9543 / 98.64 | 4532 60.75 7846 89.84 | 94.50
CIFAR-100 43.36 91.53 92.08 / 9021 | 519 1228 37.79 77.03 | 94.50
UDG | Tiny-ImageNet | 39.33 93.90 9590 / 90.01 | 486 27.52 64.17 8297 | 92.07
LSUN 30.17 95.25 96.06 / 94.05 | 1328 36.98 66.03 86.35 | 94.50
Places365 35.24 94.31 89.24 / 97.55 | 839 27.67 61.10 8375 | 9333
Mean 31.32 94.68 94.36 / 93.84 | 1298 29.02 60.93 84.58 | 93.90
Texture 2.03 99.43 99.65 / 99.02 | 21.81 7175 88.68 95.07 | 95.73
SVHN 1.13 99.87 99.72 / 99.93 | 80.10 85.83 94.53 9561 | 95.37
CIFAR-100 31.40 91.43 91.03 / 90.83 | 9.95 1573 2448 7781 | 9573
Ours | Tiny-ImageNet |  9.37 97.18 98.35 / 9421 | 7274 8091 8543 8928 | 92.16
LSUN 5.18 98.83 98.92 / 98.77 | 48.62 5492 8267 93.73 | 9573
Places365 12.49 97.25 94.15 /9892 | 16.15 46.68 73.43 89.70 | 94.21

Mean 8.24 97.33 96.97/96.95 41.56 59.26 74.87 90.20 | 94.88




Table 5. Detailed results on CIFAR-100 benchmark using ResNet-18. Our method obtains consistently better results across almost
all OOD detection metrics and all datasets. ACC shows the classification accuracy on all the ID test samples from 7. 1/] indicates
higher/lower value is better.

CCR@FPR 1

Method ‘ Dataset ‘ FPR95 | AUROC?T AUPR(In/Out) T ‘ ‘ ACC 1

LSUN 78.70 76.79 84.74
Places365 73.86 79.87 65.36

Mean 75.45 79.63 80.69

Texture 47.85 82.91 90.14
SVHN 7.10 95.43 93.83
CIFAR-10 79.25 68.20 71.40

63.05 1.59 534 18.04 44.70 | 67.10
89.60 1.96 633 2203 4797 | 69.83

74.10 385 8.66 2057 44.47 | 67.38

67.27 056 2.02 2381 52.10 | 73.06
98.31 | 2522 4787 6336 6839 | 73.06
63.78 031 3.14 1075 34.04 | 73.06
Ours Tiny-ImageNet 1.95 90.28 95.23 / 7752 | 36.64 4498 55.52 59.88 | 61.31
LSUN 54.09 78.34 87.37 / 62.22 453 1277 2658 44.76 | 70.69
Places365 56.08 79.45 68.25 / 89.70 0.60 6.04 2425 44.62 | 7292

Mean 41.05 82.44 84.37/76.47 11.70 1947 34.05 50.97 | 70.70

| | | 107* 107 107* 107! |
Texture 79.47 71.92 86.69 / 62.97 | 266 466 1509 4582 | 76.65
SVHN 90.33 75.59 6525/ 8449 | 498 1202 2379 46.61 | 76.65
CIFAR-10 81.82 77.90 7993 /7339 | 009 3.69 1539 47.20 | 76.65
ODIN | Tiny-ImageNet | 82.74 77.58 8626 / 6138 | 020 378 1599 4556 | 69.56
LSUN 80.57 78.22 86.34 / 6344 | 1.68 559 17.37 4556 | 76.10
Places365 76.42 80.66 66.77 / 89.66 | 145 416 18.98 49.60 | 77.56
Mean 81.89 77.98 78.54 / 72.56 | 1.84 565 17.77 46.73 | 75.53
Texture 84.29 76.32 8587 /59.12 | 0.82 389 1437 44.60 | 76.65
SVHN 78.23 83.57 75.61 / 9024 | 9.67 1727 33.70 5726 | 76.65
CIFAR-10 81.25 78.95 80.01 / 74.44 | 0.05 463 18.03 48.67 | 76.65
EBO | Tiny-ImageNet | 83.32 78.34 87.08 / 62.13 | 1.04 637 2144 4792 | 69.56
LSUN 84.51 77.66 8642/ 6140 | 159 644 19.58 46.66 | 76.10
Places365 78.37 80.99 68.22 / 89.60 | 140 494 2132 5121 | 77.56
Mean | 8166 79.31 80.54 / 72.82 | 243 7.26 2141 49.39 | 7553
Texture 83.97 73.46 83.11 /56.79 | 0.07 103 929 38.09 | 68.80
SVHN 85.82 76.61 65.50 / 8552 | 3.03 8.66 23.15 4544 | 68.80
CIFAR-10 87.74 73.15 76.51 / 6724 | 035 326 16.18 41.41 | 68.80
MCD | Tiny-ImageNet | 84.46 75.32 8511 /5949 | 024 614 1966 4144 | 6221
LSUN 86.08 74.05 8421 /5862 | 157 516 1805 4125| 6751
Places365 82.74 76.30 61.15/ 87.19 | 1.08 335 14.04 4337 | 7047
Mean 85.14 74.82 7593 / 69.14 | 1.06 4.60 16.73 41.83 | 67.77
Texture 86.56 73.89 8448 / 5484 | 0.66 286 12.86 41.81 | 70.49
SVHN 68.87 84.23 75.11 / 9141 | 733 1407 3153 5462 | 70.49
CIFAR-10 79.72 78.92 81.95 /7428 | 282 953 2390 4821 | 7049
OE | Tiny-ImageNet | 83.41 76.99 86.36 / 60.56 | 022 850 21.95 4398 | 63.69
LSUN 83.53 77.10 8628 / 60.97 | 1.72 791 2261 4419 | 69.89
Places365 78.24 79.62 67.13 / 88.89 | 3.69 735 2022 47.68 | 72.02
Mean 80.06 78.46 80.22 / 71.83 | 274 837 2218 46.75 | 69.51
Texture 75.04 79.53 87.63 / 6549 | 197 436 949 3384 | 6851
SVHN 60.00 88.25 8146 / 93.63 | 1490 2550 3879 56.46 | 68.51
CIFAR-10 83.35 76.18 7892 /7115 | 199 558 1727 4211 | 6851
UDG | Tiny-ImageNet | 81.73 77.18 86.00 / 61.67 | 0.67 482 17.80 41.72 | 61.80
/
/
/
/
/
/
/
/




Table 6. Detailed results on CIFAR-100 benchmark using WideResNet-28. Our method obtains consistently better results across
almost all OOD detection metrics and all datasets. ACC shows the classification accuracy on all the ID test samples from 7. 4/ indicates
higher/lower value is better.

CCR@FPR 1

Method ‘ Dataset ‘ FPR95 | AUROC?T AUPR(In/Out) T ‘ ‘ ACC 1

LSUN 77.04 79.79 87.49
Places365 72.25 81.49 66.72

Mean 75.16 80.21 80.23

Texture 34.47 73.50 85.15
SVHN 7.71 96.22 93.59
CIFAR-10 56.96 66.97 72.19

66.93 251  6.01 2233 49.14 | 73.93
90.65 1.19 328 1759 50.82 | 76.10

75.78 2.05 531 1894 4940 | 74.32

55.77 073 481 2151 4096 | 76.47
9792 | 19.61 36.21 5839 7137 | 76.85
61.96 240 7.66 1652 33.95 | 76.82
Ours Tiny-ImageNet 2.53 89.55 94.95 / 75.10 | 36.59 4233 5294 6137 | 66.12
LSUN 72.63 69.87 81.48 / 52.22 0.67 525 1452 33.03 | 69.54
Places365 49.73 79.88 67.82 / 89.04 303 835 22.07 4690 | 76.80

Mean 38.19 83.01 84.90/76.60 10.20 18.57 34.17 5270 | 74.89

| | | 107* 107 107* 107! |
Texture 78.88 76.46 84.68 / 6245 | 0.15 152 1021 4144 | 8025
SVHN 92.26 68.41 49.07 / 8128 | 173 293 802 2893 | 80.25
CIFAR-10 78.22 80.14 8143 /7626 | 006 3.09 1578 50.75 | 80.25
ODIN | Tiny-ImageNet | 80.54 77.88 8589 / 62.67 | 024 225 1397 4553 | 7292
LSUN 78.11 78.66 8557 / 65.68 | 0.19 126 11.69 4532 | 78.54
Places365 73.62 80.57 63.79 / 90.13 | 0.86 279 13.03 47.47 | 80.03
Mean 80.27 77.02 75.07 / 73.08 | 0.54 231 1212 43.24 | 7871
Texture 84.22 76.13 8508 / 5851 | 0.08 155 10.04 44.24 | 80.25
SVHN 80.05 79.88 6544 / 8837 | 097 388 14.93 50.85 | 80.25
CIFAR-10 76.18 81.50 8334 /7736 | 045 611 21.03 53.73 | 80.25
EBO | Tiny-ImageNet | 80.78 79.94 88.02 / 64.18 | 0.06 492 2231 51.82| 72.92
LSUN 82.59 78.74 86.71 / 6294 | 0.64 155 1771 49.76 | 78.54
Places365 74.54 81.63 67.67 / 90.18 | 1.13  3.69 17.55 5247 | 80.03
Mean | 79.73 79.64 79.38 / 7359 | 055 3.62 17.26 50.48 | 78.71
Texture 91.33 69.03 79.60 / 49.66 | 0.00 029 449 3261 | 68.80
SVHN 87.03 73.48 52.89 / 8473 | 174 290 6.68 33.88 | 68.80
CIFAR-10 86.89 73.79 76.15 / 6838 | 026 2.88 1340 39.94 | 68.80
MCD | Tiny-ImageNet | 85.16 74.59 84.19 /5836 | 1.01 258 1371 4031 | 6222
LSUN 88.67 72.04 83.06 / 5433 | 1.13 358 1595 39.58 | 67.29
Places365 86.83 74.05 59.58 / 8528 | 124 3.66 14.85 41.07 | 69.77
Mean 87.65 72.83 72.58 / 66.79 | 0.90 2.65 1151 37.90 | 67.61
Texture 93.07 67.00 7892 /4652 | 002 052 550 3216 | 74.01
SVHN 88.74 76.14 66.07 / 85.17 | 7.06 1291 24.82 4743 | 74.01
CIFAR-10 78.82 79.36 8129 /7527 | 1.08 7.63 1749 4884 | 74.01
OE | Tiny-ImageNet | 83.34 78.35 87.34 / 61.78 | 1.06 884 2440 47.64 | 66.49
LSUN 84.96 78.11 87.26 / 60.76 | 5.80 1040 2575 4827 | 7147
Places365 80.30 79.87 67.23 / 88.65 | 1.78 629 19.78 49.84 | 74.39
Mean 84.87 76.47 78.02 / 69.69 | 2.80 7.76 19.63 45.70 | 72.40
Texture 73.62 79.01 8553 / 67.08 | 0.00 0.00 674 46.09 | 75.77
SVHN 66.76 85.29 76.14 / 9233 | 8.00 1583 32.57 58.05 | 75.77
CIFAR-10 82.35 76.67 78.52 /7263 | 051 390 1529 4479 | 75.77
UDG | Tiny-ImageNet | 7891 79.04 87.00 / 6506 | 0.12 286 19.13 47.50 | 68.57
/
/
/
/
/
/
/
/




vantages on Tiny-ImageNet, LSUN, and Places365, but its
performance on CIFAR-100/10 (the styles between them
are very similar) of the CIFAR-10/100 benchmark is still
not outstanding. This indicates that more exploration is
needed to overcome the interference of covariate shifts in
OOD detection tasks.
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