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Appendix

A. Experiment Details
The ResNet-18 [1] is employed as the backbone for all

experiments, which is trained by an SGD optimizer with a
weight decay of 0.0005 and a momentum of 0.9. We use the
cosine annealing learning rate starting at 0.1, taking totally
180 epochs. Two dataloaders are prepared with batch-
size of 64 and 128 for DL and DU , respectively. For the
objective of training is denoted as:

L = L
(t)
cls + γL

(t)
unif + λLrep, (1)

where we set γ = 0.5 and λ = 0.3 for all experiments.
The number of cluster K for CIFAR-10/100 benchmark is
1024/2048.

B. Discussion of Training Process
In summary, we alternate the following two steps

throughout the training process:
1: Representation learning. Given the updated D

(t)
L and

D
(t)
U based on the assignment matrix Q, the model is trained

with Eq. (1) including the inter-cluster extension strategy
Lrep to obtain a discriminative representation between each
ID class and OOD class.
2: Optimizing label assignment. We fix the parameters of
the model, and use the model to estimate the energy-based
transport cost in the proposed energy-based transport (ET)
mechanism. Then we employ the ET to assign correct labels
to unlabeled ID samples as many as possible to optimize the
assignment matrix Q with the guidance of the energy-based
transport cost.

Notably, the ET is performed at the beginning of the
training. Limited by the representation not strong at this
stage, the energy metric may not reflect the discrepancy
in ID/OOD, thus providing ineffective guidance or even
accumulating errors. To explore this doubt, we trained the
model only using Eq. (1) for the firstly and performed the
above two steps alternately at the remaining epochs, and
then evaluated these strategies in Tab. 1. Results show

Epochs

N
um

Figure 1. The number of accurately assigned labels during
training in the three experiments in Tab. 1 shows that our
method significantly improves over the other two strategies in
assigning exact labels to unlabeled ID samples.‘50ET’ denotes
the model performs the two steps mentioned in Appendix B
alternately only for the last 50 epochs, while ‘150ET’ alternates
the two steps for the last 150 epochs. ‘Ours’ means our method
which alternates the two steps throughout the training process.

that our method obtains consistently best results across all
metrics, which means that performing ET during the whole
training process can more fully learn the discrepancy in
ID/OOD. In Fig. 1 we also report the comparison among
the three experiments above in the number of accurately
assigned labels. It can be seen that our method no matter
at which epoch can allocate more accurate labels than
‘50ET’ and ‘150ET’, so the ID semantic knowledge hidden
in unlabeled set mined by ET at the first few epochs is
beneficial to the subsequent training, and the strategy which
our method adopts ultimately converges and works.

C. Effectiveness of the Lrep

The inter-cluster extension strategy (Lrep) enhances the
global feature representation mixed with ID and OOD
samples and then the enhanced representation will be
mapped into a more discriminate logit space. The energy
metrics produced in this space can better reflect the ID/OOD
differences to more effectively guide the cluster distribution
of ID/OOD samples. In Fig. 2, we use TSNE [8] to visualize
the learned feature representation and compare the energy
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Feature Outputted
by Last Layer
Without Lrep:

Feature Outputted
by Last Layer
With Lrep:

Figure 2. Comparison of feature representations and the
energy metric introduced in the ET between using Lrep and
without Lrep. Lrep not only produces more distinguishable and
compact representations, but more importantly, energy metric that
reflects ID/OOD differences more significantly can be obtained.
From the statistical histogram, it can be seen that when Lrep is
used, the energy of OOD samples is concentrated at the minimum
value and has little overlap with the distribution of ID. These OOD
samples will be forced to be uniformly distributed over all clusters
in ET. TIN denotes the Tiny-ImageNet dataset.

Table 1. Comparison between different strategies of training
process. ‘50ET’ denotes the model is trained only with Eq. (1)
for the first 130 epochs and performed the two steps mentioned in
Appendix B alternately for the last 50 epochs. While ‘150ET’ uses
Eq. (1) for training for the first 30 epochs, and performs the two
steps alternately for the last 150 epochs. ‘Ours’ means our method
which alternates the two steps throughout the training process. ↑/↓
indicates higher/lower value is better. The best results are in bold.

Strategy FPR95 ↓ AUROC ↑ AUPR-In/Out ↑ ACC ↑

50ET 13.54 93.54 94.72 / 93.53 91.97
150ET 11.83 96.19 95.86 / 94.22 92.87
Ours 8.53 96.47 97.10 / 95.65 93.71

metric of ID/OOD in training set with or without Lrep. This
figure demonstrates the contribution of Lrep to the ability of
energy metric in the ET to reflect the discrepancy between
ID and OOD. Benefiting from the effective guidance of
this energy metric for samples with different semantics,
Lrep ultimately further facilitates ET to explore semantic
knowledge hidden in the unlabeled set and improve the
performance of the model.

A Cluster Dominated
by ‘Dog’

A Cluster Dominated
by ‘Automobile(Auto)’

Figure 3. Visualization of the proposed ET. We show partial
samples from two clusters where the proportion of ”Dog” and
”Automobile” classes exceed 75%, respectively. The predicted
labels and the corresponding prediction probability produced by
the model are noted above each image. The red predicted label
means that the model classifies the image into a wrong class,
and its ground-truth label is in parentheses. The images with
blue edges are from the unlabeled Tiny-ImageNet dataset, and
the other are from CIFAR-10. The visualization shows that our
ET is capable of assigning correct semantic labels to unlabeled
ID samples incorrectly predicted by the model or with low
confidence.

D. Visualization of the ET

Considering the overconfident prediction of deep neural
network models on OOD inputs revealed in [6,7], we cannot
assign labels to unlabeled samples relying on the predicted
results of the network. Moreover, in the experiment we
found that the network will predict the ID samples into
wrong classes or output insignificant confidence (softmax
probability) on the correct classes. We demonstrate the
superiority of the proposed ET in assigning accurate labels
through the visualization in Fig. 3, it can be seen from where
that our ET can collect unlabeled ID images in a correct
manner. This strategy splits the ID samples incorrectly
predicted by the model (refer to the two images being
predicted into ‘cat’ and ‘truck’) or with low confidence
(around 30%) from the unlabeled set, and allocate accurate
labels to them. It is also noted that a few OOD samples
(such as the ‘bear’ image in Fig. 3 being predicted into ‘dog’
with overconfidence) are mixed, but it will be corrected at
next epochs. To sum up, the proposed ET dramatically
improves the reliability of the model in OOD detection
tasks, and finally makes our method converge.

E. Choice of hyper-parameters.

Here we analyze the impact of the main hyper-
parameters including the threshold of class proportion
τ , clusters numbers K, and temperature value T , and
prove the robustness of the proposed method. Fig. 4a
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Figure 4. Discuss about hyper-parameters. (a), (b), and (c) respectively demonstrate the impact of the threshold of class proportion
τ , clusters numbers K, and temperature value T on the performance of our method. All the performance fluctuation is very small when
τ ≥ 0.7, K ≥ 800 and T ≥ 750, showing the robustness of our method.

Table 2. Comparison between the previous SOTA methods and ours on a large-scale benchmark. Our method obtains the best results
across almost all OOD detection metrics. ↑/↓ indicates higher/lower value is better and the best results are in bold.

ID data Method FPR95 ↓ AUROC ↑ AUPR-In/Out ↑ CCR@FPR ↑

10−4 10−3 10−2 10−1

100 classes from
ImageNet

ODIN [4] 80.07 51.23 56.93 / 50.46 0.06 1.18 8.42 13.36
EBO [5] 82.77 50.17 55.31 / 49.84 0.49 1.49 8.87 13.59
OE [3] 80.52 55.87 55.93 / 51.94 1.06 2.63 7.67 15.13

MCD [10] 91.04 52.26 54.80 / 43.92 0.08 1.92 5.57 14.35
UDG [9] 81.89 54.74 57.85 / 52.53 0.95 2.06 9.18 16.35

Ours 60.17 63.91 69.55 / 58.23 1.08 2.16 10.56 21.34

shows that the maximum fluctuation is 0.38%/0.25%
on FPR@95/AUROC when τ=0.7-0.9, and Fig. 4b in-
dicates when K=800-1200, the maximum fluctuation is
0.58%/0.27% on FPR@95/AUROC. We choose τ=0.8 and
K=1024 following [9] in the paper for fair comparisons.
During rebuttal, we added the experiment shown in Fig. 4c
and demonstrate the results are insensitive to large temper-
ature values T (e.g., ≥ 750). The best T is around 750 but
we also achieve good results when choosing T=1000 in the
paper.

F. Experiments on large-scale datasets.

To evaluate the generalization of our method in realistic
scenarios, we extend it to large-scale datasets. Specially,
we choose 50,000 samples from 100 classes in ImageNet
as labeled ID training set DL and still use Tiny-ImageNet
as the unlabeled training set DU mixed with ID and OOD
data. The testing set T contains 1,000 ID images and
4,000 OOD images from ImageNet. The comparison results
in Tab. 2 demonstrate that our proposed uncertainty-aware
optimal transport scheme obtains the best results on almost
all metrics, indicating its generalization on large-scale
datasets. However, all methods in Tab. 2 exhibit significant
performance degradation on the large-scale datasets, which
suggests that more effort is needed to address the challenges
presented by benchmarks with more diverse categories and

higher resolution in the OOD detection area.

G. Detailed Results and More Architectures

Tab. 3 and Tab. 5 show the detailed results among all
datasets. Our method obtains consistently better results
across all OOD detection metrics and all datasets. Com-
pared with other methods using extra OOD training data
(MCD [10], OE [3], UDG [9]), our method boosts the OOD
detection performance meanwhile maximally maintaining
the ID classification performance and achieves the best
results on ACC. Following [9] we also adopt another net-
work architecture of WideResNet-28 [2] to do experiments
in Tab. 4 and Tab. 6 and compare the performance. The
comparison results on WideResNet-28 have the same trend
as that on ResNet-18 [1] architecture. Our proposed method
combining ET with Lrep has advantages on almost all
metrics, showing that our method enhances both the OOD
detection and the ID classification ability. Notably, the
previous state-of-the-art approaches generally performed
well on SVHN and Texture datasets, but in Tiny-ImageNet,
LSUN, and Places365 suffered a defeat. It can be explained
that the images in the first two datasets have relatively flat
backgrounds, which are quite different in style from those
in CIFAR10/100, and the resulting covariate shifts make it
easier for the model to identify them as OOD examples.
Our proposed method especially achieves performance ad-



Table 3. Detailed results on CIFAR-10 benchmark using ResNet-18. Our method obtains consistently better results across almost
all OOD detection metrics and all datasets. ACC shows the classification accuracy on all the ID test samples from T I . ↑/↓ indicates
higher/lower value is better.

Method Dataset FPR95 ↓ AUROC ↑ AUPR(In/Out) ↑ CCR@FPR ↑ ACC ↑
10−4 10−3 10−2 10−1

ODIN

Texture 42.52 84.06 86.01 / 80.73 0.02 0.18 3.71 40.14 95.02
SVHN 52.27 83.26 63.76 / 92.60 1.01 4.00 11.82 44.85 95.02

CIFAR-100 56.34 78.40 73.21 / 80.99 0.10 0.38 4.43 30.11 95.02
Tiny-ImageNet 59.09 79.69 79.34 / 77.52 0.36 0.63 4.49 34.52 92.54

LSUN 47.85 84.56 81.56 / 85.58 0.21 0.85 9.92 46.95 95.02
Places365 53.94 82.01 54.92 / 93.30 0.47 1.68 7.13 39.63 93.87

Mean 52.00 82.00 73.13 / 85.12 0.36 1.29 6.92 39.37 94.42

EBO

Texture 52.11 80.70 83.34 / 75.20 0.01 0.13 2.79 31.96 95.02
SVHN 30.56 92.08 80.95 / 96.28 1.85 5.74 21.44 75.81 95.02

CIFAR-100 56.98 79.65 75.09 / 81.23 0.10 0.69 4.74 34.28 95.02
Tiny-ImageNet 57.81 81.65 81.80 / 78.75 0.33 0.95 6.01 40.40 92.54

LSUN 50.56 85.04 82.80 / 85.29 0.24 1.96 11.35 50.43 95.02
Places365 52.16 83.86 58.96 / 93.90 0.39 2.11 8.38 46.00 93.87

Mean 50.03 83.83 77.15 / 85.11 0.49 1.93 9.12 46.48 94.42

MCD

Texture 83.92 81.59 90.20 / 63.27 4.97 10.51 29.52 62.10 90.56
SVHN 60.27 89.78 85.33 / 94.25 20.05 38.23 55.43 74.01 90.56

CIFAR-100 74.00 82.78 83.97 / 79.16 0.80 4.99 18.88 58.18 90.56
Tiny-ImageNet 78.89 80.98 85.63 / 72.48 1.62 4.15 19.37 56.08 87.33

LSUN 68.96 84.71 85.74 / 81.50 1.75 7.93 21.88 61.54 90.56
Places365 72.08 83.51 69.44 / 92.52 3.29 7.97 23.07 60.22 88.51

Mean 73.02 83.89 83.39 / 80.53 5.41 12.30 28.02 62.02 89.68

OE

Texture 51.17 89.56 93.79 / 81.88 6.58 11.80 27.99 71.13 91.87
SVHN 20.88 96.43 93.62 / 98.32 32.72 47.33 67.20 86.75 91.87

CIFAR-100 58.54 86.22 86.17 / 84.88 3.64 6.55 19.04 61.11 91.87
Tiny-ImageNet 58.98 87.65 90.9 / 82.16 14.37 18.84 33.65 66.03 89.27

LSUN 57.97 86.75 87.69 / 85.07 11.8 19.62 29.22 61.95 91.87
Places365 55.64 87.00 73.11 / 94.67 11.36 17.36 26.33 62.23 90.99

Mean 50.53 88.93 87.55 / 87.83 13.41 20.25 33.91 68.20 91.29

UDG

Texture 20.43 96.44 98.12 / 92.91 19.90 43.33 69.19 87.71 92.94
SVHN 13.26 97.49 95.66 / 98.69 36.64 56.81 76.77 89.54 92.94

CIFAR-100 47.20 90.98 91.74 / 89.36 1.50 10.94 40.34 75.89 92.94
Tiny-ImageNet 50.18 91.91 94.43 / 86.99 0.32 23.15 53.96 78.36 90.22

LSUN 42.05 93.21 94.53 / 91.03 14.26 37.59 60.62 81.69 92.94
Places365 44.22 92.64 87.17 / 96.66 10.62 35.05 58.96 79.63 91.68

Mean 36.22 93.78 93.61 / 92.61 13.87 34.48 59.97 82.14 92.28

Ours

Texture 0.78 98.92 99.55 / 97.73 49.52 72.02 87.65 91.10 94.66
SVHN 0.26 99.03 98.79 / 99.91 64.87 82.96 91.10 93.44 94.66

CIFAR-100 29.17 91.17 92.04 / 90.02 3.16 14.07 34.89 72.02 94.66
Tiny-ImageNet 7.15 94.15 97.17 / 88.57 64.27 78.25 81.40 84.20 90.41

LSUN 0.53 98.93 99.28 / 98.91 34.88 77.74 87.65 91.10 94.66
Places365 13.26 96.61 95.71 / 98.78 25.16 58.64 81.40 85.79 93.23

Mean 8.53 96.47 97.10 / 95.65 40.31 63.95 77.35 86.27 93.71



Table 4. Detailed results on CIFAR-10 benchmark using WideResNet-28. Our method obtains consistently better results across almost
all OOD detection metrics and all datasets. ACC shows the classification accuracy on all the ID test samples from T I . ↑/↓ indicates
higher/lower value is better.

Method Dataset FPR95 ↓ AUROC ↑ AUPR(In/Out) ↑ CCR@FPR ↑ ACC ↑
10−4 10−3 10−2 10−1

ODIN

Texture 47.50 81.23 82.94 / 78.25 0.00 0.00 1.81 32.69 96.08
SVHN 51.17 85.36 68.02 / 93.53 1.10 3.54 13.08 53.04 96.08

CIFAR-100 52.92 79.47 73.57 / 82.59 0.00 0.36 3.97 30.55 96.08
Tiny-ImageNet 54.86 80.39 78.82 / 79.48 0.01 0.36 3.12 33.69 93.69

LSUN 46.53 81.86 75.70 / 85.03 0.25 0.68 3.91 33.49 96.08
Places365 49.03 81.49 49.84 / 93.60 0.04 0.55 3.72 33.14 95.02

Mean 50.33 81.63 71.48 / 85.41 0.23 0.91 4.94 36.10 95.51

EBO

Texture 40.44 89.55 91.16 / 84.41 0.00 0.00 5.41 71.35 96.08
SVHN 16.13 96.90 93.77 / 98.47 2.93 18.26 68.48 91.28 96.08

CIFAR-100 42.41 88.97 85.73 / 89.42 0.01 0.72 8.77 67.94 96.08
Tiny-ImageNet 45.81 89.55 89.55 / 86.72 0.03 0.61 9.93 73.79 93.69

LSUN 37.14 90.58 87.47 / 91.07 0.29 0.83 8.51 76.21 96.08
Places365 39.84 89.86 68.32 / 96.33 0.04 0.68 7.15 73.24 95.02

Mean 36.96 90.90 86.00 / 91.07 0.55 3.52 18.04 75.64 95.51

MCD

Texture 93.19 70.58 82.49 / 49.12 0.00 0.15 7.65 44.96 87.85
SVHN 88.68 81.37 74.43 / 86.75 3.28 8.65 28.28 66.86 87.85

CIFAR-100 83.29 76.58 77.17 / 72.50 0.03 0.72 10.47 45.36 87.85
Tiny-ImageNet 86.6 74.83 80.53 / 64.30 0.04 2.48 12.88 44.47 85.58

LSUN 93.06 70.14 72.62 / 63.38 0.55 2.81 10.51 36.16 87.85
Places365 93.13 70.42 49.04 / 84.32 0.10 2.39 9.65 36.37 86.48

Mean 89.66 73.99 72.71 / 70.06 0.67 2.87 13.24 45.7 87.24

OE

Texture 35.14 92.44 95.27 / 87.17 5.27 8.94 31.17 79.23 94.95
SVHN 22.94 96.23 94.14 / 97.78 37.34 52.79 73.87 88.74 94.95

CIFAR-100 52.99 87.17 86.80 / 86.09 1.72 6.83 21.22 63.16 94.95
Tiny-ImageNet 55.53 87.43 90.20 / 82.58 4.58 13.91 28.61 64.92 92.72

LSUN 59.69 85.56 86.18 / 83.67 5.18 11.55 26.09 58.88 94.95
Places365 55.30 85.75 69.15 / 94.25 4.50 10.31 22.42 56.79 94.24

Mean 46.93 89.10 86.96 / 88.59 9.76 17.39 33.90 68.62 94.46

UDG

Texture 22.59 95.86 97.49 / 92.59 0.87 8.92 58.06 87.56 94.50
SVHN 17.23 97.23 95.43 / 98.64 45.32 60.75 78.46 89.84 94.50

CIFAR-100 43.36 91.53 92.08 / 90.21 5.19 12.28 37.79 77.03 94.50
Tiny-ImageNet 39.33 93.90 95.90 / 90.01 4.86 27.52 64.17 82.97 92.07

LSUN 30.17 95.25 96.06 / 94.05 13.28 36.98 66.03 86.35 94.50
Places365 35.24 94.31 89.24 / 97.55 8.39 27.67 61.10 83.75 93.33

Mean 31.32 94.68 94.36 / 93.84 12.98 29.02 60.93 84.58 93.90

Ours

Texture 2.03 99.43 99.65 / 99.02 21.81 71.75 88.68 95.07 95.73
SVHN 1.13 99.87 99.72 / 99.93 80.10 85.83 94.53 95.61 95.37

CIFAR-100 31.40 91.43 91.03 / 90.83 9.95 15.73 24.48 77.81 95.73
Tiny-ImageNet 9.37 97.18 98.35 / 94.21 72.74 80.91 85.43 89.28 92.16

LSUN 5.18 98.83 98.92 / 98.77 48.62 54.92 82.67 93.73 95.73
Places365 12.49 97.25 94.15 / 98.92 16.15 46.68 73.43 89.70 94.21

Mean 8.24 97.33 96.97 / 96.95 41.56 59.26 74.87 90.20 94.88



Table 5. Detailed results on CIFAR-100 benchmark using ResNet-18. Our method obtains consistently better results across almost
all OOD detection metrics and all datasets. ACC shows the classification accuracy on all the ID test samples from T I . ↑/↓ indicates
higher/lower value is better.

Method Dataset FPR95 ↓ AUROC ↑ AUPR(In/Out) ↑ CCR@FPR ↑ ACC ↑
10−4 10−3 10−2 10−1

ODIN

Texture 79.47 77.92 86.69 / 62.97 2.66 4.66 15.09 45.82 76.65
SVHN 90.33 75.59 65.25 / 84.49 4.98 12.02 23.79 46.61 76.65

CIFAR-10 81.82 77.90 79.93 / 73.39 0.09 3.69 15.39 47.20 76.65
Tiny-ImageNet 82.74 77.58 86.26 / 61.38 0.20 3.78 15.99 45.56 69.56

LSUN 80.57 78.22 86.34 / 63.44 1.68 5.59 17.37 45.56 76.10
Places365 76.42 80.66 66.77 / 89.66 1.45 4.16 18.98 49.60 77.56

Mean 81.89 77.98 78.54 / 72.56 1.84 5.65 17.77 46.73 75.53

EBO

Texture 84.29 76.32 85.87 / 59.12 0.82 3.89 14.37 44.60 76.65
SVHN 78.23 83.57 75.61 / 90.24 9.67 17.27 33.70 57.26 76.65

CIFAR-10 81.25 78.95 80.01 / 74.44 0.05 4.63 18.03 48.67 76.65
Tiny-ImageNet 83.32 78.34 87.08 / 62.13 1.04 6.37 21.44 47.92 69.56

LSUN 84.51 77.66 86.42 / 61.40 1.59 6.44 19.58 46.66 76.10
Places365 78.37 80.99 68.22 / 89.60 1.40 4.94 21.32 51.21 77.56

Mean 81.66 79.31 80.54 / 72.82 2.43 7.26 21.41 49.39 75.53

MCD

Texture 83.97 73.46 83.11 / 56.79 0.07 1.03 9.29 38.09 68.80
SVHN 85.82 76.61 65.50 / 85.52 3.03 8.66 23.15 45.44 68.80

CIFAR-10 87.74 73.15 76.51 / 67.24 0.35 3.26 16.18 41.41 68.80
Tiny-ImageNet 84.46 75.32 85.11 / 59.49 0.24 6.14 19.66 41.44 62.21

LSUN 86.08 74.05 84.21 / 58.62 1.57 5.16 18.05 41.25 67.51
Places365 82.74 76.30 61.15 / 87.19 1.08 3.35 14.04 43.37 70.47

Mean 85.14 74.82 75.93 / 69.14 1.06 4.60 16.73 41.83 67.77

OE

Texture 86.56 73.89 84.48 / 54.84 0.66 2.86 12.86 41.81 70.49
SVHN 68.87 84.23 75.11 / 91.41 7.33 14.07 31.53 54.62 70.49

CIFAR-10 79.72 78.92 81.95 / 74.28 2.82 9.53 23.90 48.21 70.49
Tiny-ImageNet 83.41 76.99 86.36 / 60.56 0.22 8.50 21.95 43.98 63.69

LSUN 83.53 77.10 86.28 / 60.97 1.72 7.91 22.61 44.19 69.89
Places365 78.24 79.62 67.13 / 88.89 3.69 7.35 20.22 47.68 72.02

Mean 80.06 78.46 80.22 / 71.83 2.74 8.37 22.18 46.75 69.51

UDG

Texture 75.04 79.53 87.63 / 65.49 1.97 4.36 9.49 33.84 68.51
SVHN 60.00 88.25 81.46 / 93.63 14.90 25.50 38.79 56.46 68.51

CIFAR-10 83.35 76.18 78.92 / 71.15 1.99 5.58 17.27 42.11 68.51
Tiny-ImageNet 81.73 77.18 86.00 / 61.67 0.67 4.82 17.80 41.72 61.80

LSUN 78.70 76.79 84.74 / 63.05 1.59 5.34 18.04 44.70 67.10
Places365 73.86 79.87 65.36 / 89.60 1.96 6.33 22.03 47.97 69.83

Mean 75.45 79.63 80.69 / 74.10 3.85 8.66 20.57 44.47 67.38

Ours

Texture 47.85 82.91 90.14 / 67.27 0.56 2.02 23.81 52.10 73.06
SVHN 7.10 95.43 93.83 / 98.31 25.22 47.87 63.36 68.39 73.06

CIFAR-10 79.25 68.20 71.40 / 63.78 0.31 3.14 10.75 34.04 73.06
Tiny-ImageNet 1.95 90.28 95.23 / 77.52 36.64 44.98 55.52 59.88 61.31

LSUN 54.09 78.34 87.37 / 62.22 4.53 12.77 26.58 44.76 70.69
Places365 56.08 79.45 68.25 / 89.70 0.60 6.04 24.25 44.62 72.92

Mean 41.05 82.44 84.37 / 76.47 11.70 19.47 34.05 50.97 70.70



Table 6. Detailed results on CIFAR-100 benchmark using WideResNet-28. Our method obtains consistently better results across
almost all OOD detection metrics and all datasets. ACC shows the classification accuracy on all the ID test samples from T I . ↑/↓ indicates
higher/lower value is better.

Method Dataset FPR95 ↓ AUROC ↑ AUPR(In/Out) ↑ CCR@FPR ↑ ACC ↑
10−4 10−3 10−2 10−1

ODIN

Texture 78.88 76.46 84.68 / 62.45 0.15 1.52 10.21 41.44 80.25
SVHN 92.26 68.41 49.07 / 81.28 1.73 2.93 8.02 28.93 80.25

CIFAR-10 78.22 80.14 81.43 / 76.26 0.06 3.09 15.78 50.75 80.25
Tiny-ImageNet 80.54 77.88 85.89 / 62.67 0.24 2.25 13.97 45.53 72.92

LSUN 78.11 78.66 85.57 / 65.68 0.19 1.26 11.69 45.32 78.54
Places365 73.62 80.57 63.79 / 90.13 0.86 2.79 13.03 47.47 80.03

Mean 80.27 77.02 75.07 / 73.08 0.54 2.31 12.12 43.24 78.71

EBO

Texture 84.22 76.13 85.08 / 58.51 0.08 1.55 10.04 44.24 80.25
SVHN 80.05 79.88 65.44 / 88.37 0.97 3.88 14.93 50.85 80.25

CIFAR-10 76.18 81.50 83.34 / 77.36 0.45 6.11 21.03 53.73 80.25
Tiny-ImageNet 80.78 79.94 88.02 / 64.18 0.06 4.92 22.31 51.82 72.92

LSUN 82.59 78.74 86.71 / 62.94 0.64 1.55 17.71 49.76 78.54
Places365 74.54 81.63 67.67 / 90.18 1.13 3.69 17.55 52.47 80.03

Mean 79.73 79.64 79.38 / 73.59 0.55 3.62 17.26 50.48 78.71

MCD

Texture 91.33 69.03 79.60 / 49.66 0.00 0.29 4.49 32.61 68.80
SVHN 87.03 73.48 52.89 / 84.73 1.74 2.90 6.68 33.88 68.80

CIFAR-10 86.89 73.79 76.15 / 68.38 0.26 2.88 13.40 39.94 68.80
Tiny-ImageNet 85.16 74.59 84.19 / 58.36 1.01 2.58 13.71 40.31 62.22

LSUN 88.67 72.04 83.06 / 54.33 1.13 3.58 15.95 39.58 67.29
Places365 86.83 74.05 59.58 / 85.28 1.24 3.66 14.85 41.07 69.77

Mean 87.65 72.83 72.58 / 66.79 0.90 2.65 11.51 37.90 67.61

OE

Texture 93.07 67.00 78.92 / 46.52 0.02 0.52 5.50 32.16 74.01
SVHN 88.74 76.14 66.07 / 85.17 7.06 12.91 24.82 47.43 74.01

CIFAR-10 78.82 79.36 81.29 / 75.27 1.08 7.63 17.49 48.84 74.01
Tiny-ImageNet 83.34 78.35 87.34 / 61.78 1.06 8.84 24.40 47.64 66.49

LSUN 84.96 78.11 87.26 / 60.76 5.80 10.40 25.75 48.27 71.47
Places365 80.30 79.87 67.23 / 88.65 1.78 6.29 19.78 49.84 74.39

Mean 84.87 76.47 78.02 / 69.69 2.80 7.76 19.63 45.70 72.40

UDG

Texture 73.62 79.01 85.53 / 67.08 0.00 0.00 6.74 46.09 75.77
SVHN 66.76 85.29 76.14 / 92.33 8.00 15.83 32.57 58.05 75.77

CIFAR-10 82.35 76.67 78.52 / 72.63 0.51 3.90 15.29 44.79 75.77
Tiny-ImageNet 78.91 79.04 87.00 / 65.06 0.12 2.86 19.13 47.50 68.57

LSUN 77.04 79.79 87.49 / 66.93 2.51 6.01 22.33 49.14 73.93
Places365 72.25 81.49 66.72 / 90.65 1.19 3.28 17.59 50.82 76.10

Mean 75.16 80.21 80.23 / 75.78 2.05 5.31 18.94 49.40 74.32

Ours

Texture 34.47 73.50 85.15 / 55.77 0.73 4.81 21.51 40.96 76.47
SVHN 7.71 96.22 93.59 / 97.92 19.61 36.21 58.39 71.37 76.85

CIFAR-10 56.96 66.97 72.19 / 61.96 2.40 7.66 16.52 33.95 76.82
Tiny-ImageNet 2.53 89.55 94.95 / 75.10 36.59 42.33 52.94 61.37 66.12

LSUN 72.63 69.87 81.48 / 52.22 0.67 5.25 14.52 33.03 69.54
Places365 49.73 79.88 67.82 / 89.04 3.03 8.35 22.07 46.90 76.80

Mean 38.19 83.01 84.90 / 76.60 10.20 18.57 34.17 52.70 74.89



vantages on Tiny-ImageNet, LSUN, and Places365, but its
performance on CIFAR-100/10 (the styles between them
are very similar) of the CIFAR-10/100 benchmark is still
not outstanding. This indicates that more exploration is
needed to overcome the interference of covariate shifts in
OOD detection tasks.
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