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Supplementary Material

A. Additional dataset details

A.1. Image-caption dataset preprocessing

Our cleaning and filtering workflow consist of first filter-
ing out invalid image-caption pairs (e.g. either if the caption
is empty/nonsensical, or if the corresponding image is miss-
ing). We then, to the best of our knowledge, removed non-
histopathology images (including gross images, cytology
images, X-ray/CT images, electron microscopy images, flu-
orescent microscopy images, schematic diagrams, etc.) and
cropped multipanel figures into individual images, clean-
ing the paired caption accordingly. The resulting dataset
is highly diverse and is expected to cover all major biopsy
sites and morphologies of both diseased and normal tissue.

Figure 1. Word cloud of captions in the paired image-caption
dataset used for pretraining. For clarity, we excluded some com-
mon verbs and combined spelling variations of the same word.

A.2. Color variation and diversity of images

Recent large scale studies have demonstrated that stain
normalization (SN) is not required to achieve robust gener-
alization [4] , especially when training with large, diverse,
multi-institutional datasets that cover a wide range of stain-
ing profiles [1]. Therefore we did not perform SN to avoid
computational overhead and choosing between SN algo-
rithms. We investigated staining variations in the datasets
used (Fig. 2). We find TCGA and our dataset show wider
coverage due to sourcing from many institutions and/or di-
verse tissue sites compared to our in-house independent test
set, but we observe substantial overlap across datasets.

Figure 2. Plot of mean hue (angle) and saturation (radius) of each
image (dot) after RGB to Hue-Saturation-Density (HSD) transfor-
mation. Sampling was performed to avoid over clutter.

B. Additional training details
B.1. HistPathGPT pretraining

See Table 1.

Hyperparameter Value

Architecture gpt2-medium
Max. sequence length 512
Vocabulary size 32000

Batch size 64
Gradient accumulation 4
Weight decay 0.01
AdamW β (0.9, 0.999)
Peak learnng rate 1e-4
Learning rate schedule Linear
Warmup steps 750
Training steps 15000

Table 1. Hyperparameters used in pretraining the text en-
coder (HistPathGPT). In-house pathology reports were first de-
identified using regex pattern matching before tokenization. 4 ×
80GB NVIDIA A100 GPUs were used for training. Batch size
refers to the total batch size across GPUs. Effective batch size
used for optimization is batch size × gradient accumulation steps.
The sequence length of training examples was set to the maximum
sequence length supported by the model (i.e. 512).

B.2. Visual language pretraining

See Table 2.

B.3. Supervised baselines

To establish a supervised baseline of comparison for
zeroshot transfer, we use the ABMIL weakly-supervised
learning algorithm [2]. Same as MI-Zero, instances (i.e.
patches of size 256 × 256 at 20×-equivalent magnification)
are embedded using the SOTA SSL encoder CTransPath

1



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

CVPR
#1207

CVPR
#1207

CVPR 2023 Submission #1207. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Hyperparameter Value

Batch Size 512
Weight decay 0.2
AdamW β (0.9, 0.999)
Temperature 0.07
Peak learning rate 1e-4
Learning rate schedule Cosine
Warmup steps 100
Epochs 50

Table 2. Hyperparameters used in visual language pretraining.
8 × 80GB NVIDIA A100 GPUs were used for training. The max-
imum sequence length for captions is set to 128.

Hyperparameter Value

Weight decay 1e-5
AdamW β (0.9, 0.999)
Learning rate 1e-4

Table 3. Hyperparameters used in weakly supervised base-
lines. Each experiment is performed on a single 24GB NVIDIA
3090 GPU.

[5] (CTP). Due to the relatively small size of the TCGA
datasets (∼ 1000 slides or fewer for each task), we fol-
low the study design of previous works by performing 5-
fold Monte Carlo cross-validation (CV). In each fold, each
dataset is randomly partitioned at the patient level into train-
ing (80%), validation (10%) and testing (10%), stratified by
the class label. The validation set is used to early stop train-
ing and model selection and performance on the test set is
reported (Appendix C.4). Each model is trained for a min-
imum of 20 epochs and an early stopping patience of 10
epochs based on the balanced accuracy measured on the val-
idation set. The 5 models trained using 5-fold CV are then
evaluated on our independent, in-house datasets described
in Section 4.2. For experiments using 1% and 10% of train-
ing labels, in each of 5 folds, we perform stratified sampling
to select 1% and 10% of the full training set as the new train-
ing sets. All results are included in Figure 3 and Figure 4.

C. Additional zero-shot transfer details
C.1. Prompt pools

To evaluate zeroshot transfer, we sampled 50 sets of
prompts using a predetermined prompt pool for each task.
Each task draws from a unique pool of class names while
the pool of templates are shared across tasks. A class name
and the template collectively forms the prompt. For the tem-
plates, we have:

• CLASSNAME.
• a photomicrograph showing CLASSNAME.

• a photomicrograph of CLASSNAME.
• an image of CLASSNAME.
• an image showing CLASSNAME.
• an example of CLASSNAME.
• CLASSNAME is shown.
• this is CLASSNAME.
• there is CLASSNAME.
• a histopathological image showing
CLASSNAME.

• a histopathological image of
CLASSNAME.

• a histopathological photograph of
CLASSNAME.

• a histopathological photograph
showing CLASSNAME.

• shows CLASSNAME.
• presence of CLASSNAME.
• CLASSNAME is present.

The CLASSNAME is replaced by a sampled class name.
The class names for each task are presented in Table 4. For
each of 50 prompts, we sample a random number of tem-
plates and ensemble them in the embedding space in the
same manner as performed by CLIP [3].

C.2. Additional results to ablation studies

Training data comparison. To assess the added value of
our image-text pairs, we trained our best performing model
configuration (CTP + HistPathGPT) on our full training
dataset and compared to training only on ARCH (7,562
pathology pairs), which is a subset of our training data
(33,480 pathology pairs). We find that for all pooling meth-
ods, training on our full dataset performs better than train-
ing on ARCH only. This trend did not change significantly
across different pooling methods with MI-Zero. Results are
presented in Table 5.

Image encoder pretraining. To assess the benefit of pre-
training the image encoder, we compare our best perform-
ing model with a variation that uses ViT-S pretrained on Im-
ageNet as well as starting with entirely randomly-initialized
weights. We find that pretraining the image encoder and the
text encoder on in-domain data performs the best across all
3 tasks. The same trend is maintained across different pool-
ing methods. We report full results in Table 6.

Locked-image tuning. We assess whether locked image
tuning (LiT) [6] improves performance on zeroshot transfer
by freezing all parameters in the pretrained image encoder
when performing visual-language pretraining. Results are
reported in Table 7. We find that LiT improves performance
slightly when the text encoder is pretrained on in-domain
corpora (HistPathGPT), but significantly degrades perfor-
mance otherwise. We hypothesize this is because when
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the image and text encoders are pretrained on different do-
mains, the domain gap between the image and text latent
space makes it challenging for the model to align via a lin-
ear projection and additional parameters and non-linearity
might need to be needed.

C.3. Visualization of similarity scores

We randomly select a slide from each in-house test set
and visualize patches with highest and lowest similarity
scores (Figure 5 and Figure 6). A board-certified pathol-
ogist confirmed that relevant morphological patterns are se-
lected with high similarity scores, which drive the model’s
zero-shot slide-level predictions in the case of topK pooling.

C.4. Additional zero-shot transfer on TCGA

As introduced in the main paper, we present additional
results on the TCGA counterparts of our independent test
set tasks (BRCA, NSCLC, and RCC). For each of the 3
cancer subtyping classification tasks, we preprocesses the
WSIs the same way as presented in the main paper and use
MI-Zero for zero-shot transfer. Classification results com-
paring several setups are summarized in Table 8 and box-
plots showing the performance distribution of each model
on the set of 50 sampled prompts can be found in Figure 7.
Overall, we observe consistent trends between our indepen-
dent test set results and TCGA results.

D. Runtime analysis
D.1. Comparing runtime of MI-Zero against AB-

MIL

We expect MI-Zero inference to outperform SOTA meth-
ods that utilize learned attention operators (typically require
a forward pass through a multi-layer neural network), af-
ter patch embeddings are extracted, MI-Zero only requires
a single linear projection to project them into the shared
visual-language latent space and computing the cosine sim-
ilarity scores between each patch and each class prompt
(which can be efficiently implemented using matrix mul-
tiplication). Note while MI-Zero also needs to build the
zero-shot classifier by embedding the class prompts using
the text encoder and projecting them into the shared latent
space, this step only needs to be computed once for each
task and prompt, and can be cached for future use (i.e., the
cost is amortized across all samples).

Using the in-house BRCA subtyping dataset (average
bag size is 8767.42 patches per WSI), we benchmarked the
run time of topK pooling MI-Zero, which we found to per-
form consistently well across all tasks. When not consider-
ing IO, MI-Zero inference took between 0.70 to 0.75 ms per
WSI depending on the K used, which is nearly 2x the speed
of ABMIL inference at 1.4 ms per WSI, in line with our ex-
pecation. We found on average, building the zero-shot clas-

sifier using the text encoder took around 70 ms per prompt
(including time to ensemble multiple templates), which rep-
resents an additional amortized cost of 0.35 ms per WSI for
our test set of 200 WSIs. Lastly, we note that in the cur-
rent workflows of embedding-based MIL inference, IO (i.e.
reading the embeddings from disk to memory and transfer-
ring the tensors to the GPU) still represents the primary bot-
tleneck, which took nearly 20ms per WSI on our worksta-
tion despite using a fast SSD.
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Figure 3. ABMIL supervised baseline and MI-Zero zeroshot performance on the independent in-house datasets. The topK pooling
variant of MI-Zero is shown. For varying label fractions, each ABMIL model from the 5-fold CV run is represented by a gray dot and the
5-fold average is represented by the blue dot.

Figure 4. ABMIL supervised baseline and MI-Zero zeroshot performance on TCGA test sets. The topK pooling variant of MI-Zero
is shown. For varying label fractions, each ABMIL model from the 5-fold CV run is represented by a gray dot and the 5-fold average is
represented by the blue dot.
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Task Class Class names

BRCA
IDC invasive ductal carcinoma

carcinoma of the breast, ductal pattern

ILC invasive lobular carcinoma
carcinoma of the breast, lobular pattern

NSCLC

LUAD

adenocarcinoma
lung adenocarcinoma
adenocarcinoma of the lung
pulmonary adenocarcinoma
adenocarcinoma, lepidic pattern
adenocarcinoma, solid pattern
adenocarcinoma, micropapillary pattern
adenocarcinoma, acinar pattern
adenocarcinoma, papillary pattern

LUSC

squamous cell carcinoma
lung squamous cell carcinoma
squamous cell carcinoma of the lung
pulmonary squamous cell carcinoma

RCC

CCRCC

clear cell renal cell carcinoma
renal cell carcinoma, clear cell type
renal cell carcinoma of the clear cell type
clear cell RCC

PRCC

papillary renal cell carcinoma
renal cell carcinoma, papillary type
renal cell carcinoma of the papillary type
papillary RCC

CHRCC

chromophobe renal cell carcinoma
renal cell carcinoma, chromophobe type
renal cell carcinoma of the chromophobe type
chromophobe RCC

Table 4. Class name pools for each class in each task. Sampled subsets are substituted into sampled templates to form prompts.

Dataset SS Pooling BRCA NSCLC RCC Average

ARCH
✗ topK 0.625 0.593 0.540 0.586

Ours 0.672 0.700 0.733 0.702

ARCH
✓ topK 0.635 0.607 0.523 0.589

Ours 0.615 0.705 0.733 0.684

ARCH
✗ mean 0.655 0.515 0.533 0.568

Ours 0.620 0.590 0.633 0.614

ARCH
✓ mean 0.650 0.518 0.530 0.566

Ours 0.625 0.590 0.637 0.617

Table 5. Training data comparison. Balanced accuracies on in-house independent test sets are shown. To assess the added value of our
image-text pairs, we trained our best performing model configuration (CTP + HistPathGPT) on our full training dataset and compared to
training only on ARCH (7,562 pathology pairs), which is a subset of our training data (33,480 pathology pairs).
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Image Encoder Image Pretraining Text Pretraining SS Pooling BRCA NSCLC RCC Average

CTP SSL In-domain

✗ topK

0.672 0.700 0.733 0.702
ViT-S SSL In-domain 0.617 0.625 0.673 0.639
ViT-S ImageNet In-domain 0.660 0.525 0.600 0.595
CTP None None 0.535 0.520 0.297 0.451
ViT-S None None 0.500 0.510 0.290 0.433

CTP SSL In-domain

✓ topK

0.615 0.705 0.733 0.684
ViT-S SSL In-domain 0.625 0.603 0.653 0.627
ViT-S ImageNet In-domain 0.650 0.512 0.657 0.606
CTP None None 0.528 0.527 0.313 0.456
ViT-S None None 0.495 0.495 0.310 0.433

CTP SSL In-domain

✗ mean

0.620 0.590 0.633 0.614
ViT-S SSL In-domain 0.590 0.515 0.543 0.549
ViT-S ImageNet In-domain 0.615 0.510 0.580 0.568
CTP None None 0.535 0.560 0.397 0.497
ViT-S None None 0.497 0.520 0.317 0.445

CTP SSL In-domain

✓ mean

0.625 0.590 0.637 0.617
ViT-S SSL In-domain 0.590 0.515 0.540 0.548
ViT-S ImageNet In-domain 0.615 0.510 0.573 0.566
CTP None None 0.542 0.562 0.393 0.499
ViT-S None None 0.495 0.520 0.320 0.445

Table 6. Pretraining comparison. Balanced accuracy of different pretraining configurations across all 3 tasks on in-house independent
test set. All configurations above use HistPathGPT as the text encoder. SS: spatial smoothing.
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Text Encoder & Pretraining LIT SS Pooling BRCA NSCLC RCC Average

HistPathGPT (In-domain) ✗
✗ topK 0.672 0.700 0.733 0.702

✓ 0.690 0.670 0.760 0.707

PubMedBert (Out-of-domain) ✗
✗ topK 0.570 0.693 0.777 0.680

✓ 0.597 0.615 0.643 0.619

BioClinicalBert (Out-of-domain) ✗
✗ topK 0.660 0.742 0.697 0.700

✓ 0.575 0.623 0.547 0.581

HistPathGPT (In-domain) ✗
✓ topK 0.615 0.705 0.733 0.684

✓ 0.688 0.675 0.740 0.701

PubMedBert (Out-of-domain) ✗
✓ topK 0.577 0.725 0.760 0.688

✓ 0.595 0.625 0.647 0.622

BioClinicalBert (Out-of-domain) ✗
✓ topK 0.660 0.770 0.663 0.698

✓ 0.600 0.635 0.543 0.593

HistPathGPT (In-domain) ✗
✗ mean 0.620 0.590 0.633 0.614

✓ 0.603 0.557 0.600 0.587

PubMedBert (Out-of-domain) ✗
✗ mean 0.585 0.650 0.727 0.654

✓ 0.573 0.557 0.543 0.558

BioClinicalBert (Out-of-domain) ✗
✗ mean 0.672 0.680 0.543 0.632

✓ 0.607 0.575 0.533 0.572

HistPathGPT (In-domain) ✗
✓ mean 0.625 0.590 0.637 0.617

✓ 0.605 0.557 0.600 0.588

PubMedBert (Out-of-domain) ✗
✓ mean 0.587 0.650 0.730 0.656

✓ 0.575 0.560 0.543 0.559

BioClinicalBert (Out-of-domain) ✗
✓ mean 0.675 0.682 0.543 0.634

✓ 0.613 0.577 0.533 0.574

Table 7. Locked-image tuning. Balanced accuracy of models using locked-image tuning across all 3 tasks on in-house independent test
set. All configurations above use CTP as the image encoder. LIT: locked-image tuning, SS: spatial smoothing.
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Figure 5. Visualization of similarity scores for BRCA subtyping. A WSI of each BRCA subtype (IDC, ILC) is randomly selected
from the in-house independent test set, and patches are ranked by their cosine similarity score with the class prompt embedding. The top
(highest similarity scores) and bottom (lowest similarity scores) patches are displayed for each WSI. A board-certified pathologist confirms
relevant morphological patterns to each class embedding are selected by MI-Zero (high similarity scores). In IDC, high scores correspond
to moderate grade tumor cells forming nests and abortive glands, typical of invasive ductal carcinoma of the breast. Low scores picked
up instances covered by pen markings, connective tissue, and lymphocyte aggregates with no tumor cells present. In ILC, high scores
correspond to low grade tumor cells invading as individual cells or as single files, typical of invasive lobular carcinoma of the breast. Low
scores picked up instances of connective and adipose tissue with no tumor cells present.
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Figure 6. Visualization of similarity scores for NSCLC subtyping. A WSI of each NSCLC subtype (LUAD, LUSC) is randomly
selected from the in-house independent test set, and patches are ranked by their cosine similarity score with the class prompt embedding.
The top (highest similarity scores) and bottom (lowest similarity scores) patches are displayed for each WSI. A board-certified pathologist
confirms relevant morphological patterns to each class embedding are selected by MI-Zero (high similarity scores). In LUAD, high scores
correspond to tumor cells forming nests and lining spaces with prominent nucleoli, characteristic of adenocarcinoma. Low scores picked
up connective tissue, lymphocytes, and blood. In LUSC, high scores correspond to aggregates of tumor cells with keratinization and
intercellular bridges characteristic of squamous cell carcinoma. Low scores picked up connective tissue, muscle, and inflammatory cells.
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Figure 7. Zero-shot transfer performance of selected model configurations on TCGA subsets. Boxplots show distribution of 5-fold
averaged model subsets performance for 50 randomly sampled prompts. Columns show different subtyping tasks, rows show the absence
or presence of spatial smoothing before pooling, and colors within each boxplot group show pooling methods (K indicates the number of
patches selected by topK pooling). Red dashed line shows balanced accuracy of ABMIL trained on 100% of the corresponding TCGA
cancer subsets averaged across 5 folds. Blue dashed line shows ABMIL performance trained on 1% of training data instead. HP-GPT:
HistoPathGPT, P-Bert: PubMedBert, B-Bert: BioClinicalBert.

Model Text Encoder & Pretraining SS Pooling BRCA NSCLC RCC Average

ABMIL (1% Data) None
✗ attention 0.522 0.746 0.625 0.631

ABMIL (100% Data) None 0.863 0.907 0.946 0.905

MI-Zero (Ours)

HistPathGPT (None)

✗ topK

0.636 0.647 0.728 0.670
HistPathGPT (In-domain) 0.642 0.717 0.832 0.730
PubmedBert (Out-of-domain) 0.554 0.673 0.871 0.700
BioclinicalBert (Out-of-domain) 0.660 0.732 0.723 0.705

MI-Zero (Ours)

HistPathGPT (None)

✓ topK

0.639 0.675 0.736 0.683
HistPathGPT (In-domain) 0.619 0.701 0.846 0.722
PubmedBert (Out-of-domain) 0.568 0.709 0.867 0.715
BioclinicalBert (Out-of-domain) 0.677 0.749 0.731 0.719

MI-Zero (Ours)

HistPathGPT (None)

✗ mean

0.680 0.582 0.698 0.653
HistPathGPT (In-domain) 0.626 0.660 0.777 0.688
PubmedBert (Out-of-domain) 0.593 0.673 0.806 0.691
BioclinicalBert (Out-of-domain) 0.721 0.728 0.659 0.703

MI-Zero (Ours)

HistPathGPT (None)

✓ mean

0.680 0.583 0.697 0.653
HistPathGPT (In-domain) 0.625 0.660 0.776 0.687
PubmedBert (Out-of-domain) 0.592 0.671 0.806 0.689
BioclinicalBert (Out-of-domain) 0.722 0.728 0.660 0.703

Table 8. Additional results on TCGA. Balanced accuracies are shown. We observe similar trends compared to in-house independent test
set results. Pretraining the text encoder on unpaired data yields the better results than no pretraining. Spatial smoothing does not yield
consistent improvement. TopK pooling performs better than mean pooling for all models.
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