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1. Detailed Network Architecture
We proposed a detailed network architecture of our ap-

proach in Fig. 1. The green boxes are the features, in which
we note the feature dimensions. The blue boxes represent
blocks of EfficientNet [3]. The red boxes represent GCN
blocks. The GCN residual blocks in the network are de-
signed following the manner of [1]. Details of the residual
blocks are shown on the right of the figure. The gray boxes
are the feature skip-connection part. To get multi-level im-
age features from feature maps, we project the vertices into
the feature maps, and use a bilinear interpolation technique
to sample features. We will illustrate the process more in
Sec. 2. The purple boxes are the sub-network used to gener-
ate MANO mesh. The orange boxes indicate the annotation
we used. The green arrows are feature streams and the red
lines are skip connections.

We fetch skip-connected features from the output of Ef-
ficientNet Block 1, Block 3, and Block 7. The features are
used as parts of the input of the GCN. The GCN has 3 lev-
els. At each level, the input features go through a 10-layer
GCN Residual Block, then output a feature vector and a
3D location at each vertex. The 3D locations are used as
intermediate output and for supervision. The features are
used as a part of the input for the next level. At the third
level, we only output the 3D location of each vertex as the
final mesh.

2. Skip-connected Feature Sampling
In Fig. 1, the features fetched from EfficientNet are fea-

ture maps. We want to transfer them into feature vectors and
put them on the vertices without losing spacial information.
Thus, we design a feature sampling strategy to put the local
image feature on each graph vertex. As shown in Fig. 2, we
use orthodox projection to find the feature vector for each
vertex on the feature map. For every vertex P , we calculate
the projection point P ′ on the feature map. Then, we extract
the feature vector x ∈ Rc using bilinear interpolation at

point P ′, where c is the feature map channel number. The
total output feature dimension is N × c, where N is the
number of graph vertices.

3. Mesh Post-processing
We do a post-process on the third-level mesh. Due to the

flaws of groundtruth mesh (shown in Fig. 4), some of our
output mesh also have similar structure flaws. To tackle this
problem, we designed a smooth mask to reduce the flaws.
Fig. 3 shows the output of the network, our smooth mask,
and our final mesh result. As we can see, the flaws are
highly reduced. Note that, this flaw is caused by the noisy
groundtruth, so it can also be reduced by a better remeshing
of the training data in the future.

4. Remeshing Procedure
We try to use the multiview stereo (MVS) generated mesh

provided in [2]. However, the MVS mesh has about 500k
vertices on each mesh. The large vertex number mesh with
high redundancy makes our training process much slower.
Moreover, without a fixed topology, the choices of shape
supervision are limited. For example, we would not be able
to use the per vertex loss and frequency decomposition loss
for training.

Thus, we designed a remeshing technic to transfer the
mesh generated in the multiview stereo (MVS) method into a
unified topology. The algorithm is shown in Fig. 4a. First, we
align the MVS mesh with a parametric template mesh. Here,
we use template meshes designed in the main paper Section
3.2. Second, we use an optimization approach to calculate a
set of pose and shape parameters, so that the template mesh
becomes a coarse approximation of the MVS mesh. Finally,
we use the closet point on the MVS mesh as a substitute
for each vertex on the parametric mesh. This procedure
would preserve the detailed shape and the topology of the
parametric template at the same time. In our experiments,
we generate 3 resolution levels of groundtruth mesh for
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Figure 1. The detailed network architecture.
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Figure 2. Skip-connected Feature Sampling.

supervision, and use the third level for testing.
However, despite the good attributes of the groundtruth

meshes, some of them still have flaws. Fig. 4b shows an
example of the mesh flaws inside the mesh (red rectangle). It
happens because some of the vertices on the parametric mesh
find the wrong corresponding vertices on the MVS mesh.
These groundtruth mesh flaws will eventually cause defects
on generated mesh (shown in Fig. 3). We have largely re-
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Figure 3. Mesh pose-processing. a) Original mesh. b) Smoothing
mask (Red). c) Final result.

duced the flaws of our mesh using the mesh post-processing
method mentioned in Sec. 3.

5. More Visualization Results
We show more visualization results of our proposed

method in Fig. 5.

6. Failure Cases and Future Works
We show in Fig. 6 a few failure cases where our method

generates hand meshes with flaws. Most of these flaws are
caused by groundtruth flaws in remeshing (shown in Fig. 4b).
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Figure 4. a) Remeshing procedure. b) Example of groundtruth flaws
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Figure 5. More visualization results.

In future works, we would improve the remeshing procedure
to reduce the artifacts. Besides, we would also improve
our method to tackle the in-the-wild hand reconstruction
problem.
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