Appendix

1. Pseudocodes

Algorithm 5 FedAvgM (FedProxM)

1: Input: learning rates (1, 14), control parameters  and 31, synchronization interval I and the number of workers V.

2: Initial state a:( )=y e R Vi€ [N] and mg = 0.
3: fort—O,l,... T—-1do
4:  Onserver:

5. Server samples a subset S; with .S active workers from [N] and transmits @ to S;.
6:  On workers:
7. for i € S, parallel do
8: Sets ") = .
9: forr=0,1,...,7 —1do
10: ), =al) - mez(ac(L)) (FedAvgM)
t,t+1 — i, 7 t,T
i 2y = 2l — (Vi(al)) + (@l — @)). (FedProxM)
12: end for
13: Sends d§+)1 =z — acg 3 to server.
14:  end for

15:  Onserver: ‘

16 diy1 = &Y cs, dgl’ My = Bimy +diy .

17: T4l = Tt — NgMy41.-

18:  Sends x;41 to sampled active workers in the next round.
19: end for

20: Output:

Algorithm 6 MIFAM (MIFA, i.e., MIFAM with 3; = 0.0)

1: Input: learning rates (1, 174), control parameter (31, synchronization interval I and the number of workers V.
2 Initial state &) = @) € R, gl = 0,Vi € [N],do = & SN, g% and mg = 0.

3: fort =0,1,..., 7T — 1do

4:  Onserver:

5 Server samples a subset S; with S active workers from [N] and transmits x; to S;.
6:  On workers:

7. fori € S, parallel do
3

9

Sets mg ()) = 4.

10: mg?ﬂ = wgll meZ(:Et ).

]

11 end for }

12: Computes gg_l =z — m$ ).

13: Sends dgll = gt(le gélzl to Server.
14: Sets gglll = g§+>1.

15:  end for

16:  Onserver: 4

17 dyy1 =di+ & D ies, difﬁl, My = Simyg +dig.
18: Lt41 = Tt — NgMgy1.

19:  Sends x, to sampled active workers in the next round.
20: end for

21: Output:




Algorithm 7 GradMA-W

1: Input: learning rates (7);, 14), the number of all workers N, the number of active workers each round .S and synchroniza-
tion interval /.

2: Initial state ac((f) =xy € R%, Vi € [N].

3: fort=0,1,...,7T —1do

4. On server:

Server samples a subset S; with .S active workers and transmits x; to S;.

On workers:

for i € S, parallel do

mgfﬁl = Worker,Update(a:gi), x, nr, 1),

R AN

sends dEQl =z — azgﬁl to server.

10:  end for

11:  Onserver: ‘

12: dt+1 = %Ziest dﬁzl’ Tip1 = Tt — ngdt-‘rl'

13:  Sends x;y1 to sampled active workers in the next round.
14: end for

15: Output:

Algorithm 8 GradMA-S

1: Input: learning rates (7, 7,), the number of all workers N, the number of sampled active workers per communication
round S, control parameters (51, 82), synchronization interval I and memory size m (S < m < min{d, N}).

2 Tnitial state ) = x, € RY, Vi € [N], g = 0.

3: Initial counter = {c(i) = 0},Vi € [N].

4: Initial memory state D = {}.

5. buf = {}, newbuf = {}.

6: fort=0,1,...,7T —1do

7. On server:

8:  Server samples a subset S; with .S active workers and transmits x; to S;.

9:  counter, D, buf, new_buf < mem.red (m,S;, counter, D, buf, new_buf).
10:  On workers:

11:  fori € S; parallel do

12: Sets mgz()) = Ty.

13: forr=0,1,...,] —1do

14: wifiﬂ = wg? - mei(a:Efl)

15: end for '

16: Sends dg?l =z — mg to server.

17:  end for

18:  Onserver: ‘

190 D @y, My = Server,Update([dgﬁzl,i € S, my, D, ng, 1, B2, buf, new_buf).
20:  Sends ;4 to sampled active workers in the next round.

21:  newbuf = {}.
22: end for
23: Qutput: =

.2. Complete Empirical Study

.2.1 Experimental Setup

To gauge the effectiveness of Worker_Update() and Server_Update(), we perform ablation study of GradMA. For this pur-
pose, we design Alg. 7 (marked as GradMA-W) and Alg. 8 (marked as GradMA-S), as specified in Appendix .1. Mean-
while, we compare other baselines, including FedAvg [26], FedProx [19], MOON [17], FedMLB [13], Scaffold [12], Fed-



Dyn [1], MimeLite [| 1], MIFA [5] and slow-momentum variants of FedAvg, FedProx, MIFA, MOON and FedMLB (i.e.,
FedAvgM [7], FedProxM, MIFAM, MOONM and FedMLBM), in terms of test accuracy and communication efficiency in
different FL scenarios. For fairness, we divide the baselines into three groups based on FedAvg’s improvements on the worker
side, server side, or both. Furthermore, on top of GradMA-S, we empirically study the effect of the control parameters (31,
B2) and verify the effectiveness of men_red() by setting varying memory sizes m.

All our experiments are performed on a centralized network with 100 workers. And fix synchronization interval I = 5.
To explore the performances of the approaches, we set up multiple different scenarios w.r.t. the number of sampled active
workers S per communication round and data heterogeneity. Specifically, we set S € {5,10,50}. Furthermore, we use
Dirichlet process Dp(w) [1,46] to strictly partition the training set of each dataset across 100 workers, where the scaling
parameter w controls the degree of data heterogeneity across workers. Notably, a smaller w corresponds to higher data
heterogeneity. We setw € {0.01,0.1,1.0}. A visualization of the data partitions for the four datasets at varying w values can
be found in Fig. 8. Also, the original testing set (without partitioning) of each dataset is used to evaluate the performance of
the trained centralized model. For MNIST, a neural network (NN) with three linear hidden layers is implemented for each
worker. We fix the total number of iterations to 2500, i.e., T' x I = 2500. For CIFAR-10 (CIFAR-100, Tiny-Imagenet),
each worker implements a Lenet-5 [16] (VGG-11 [31], Resnet20 [6]) architecture. We fix the total number of iterations to
5000 (10000, 10000), i.e., T' x I = 5000 (10000, 10000).
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Figure 8. Data heterogeneity among workers is visualized on four datasets (MNIST, CIFAR-10, CIFAR-100 and Tiny-Imagenet), where
the x-axis represents the workers id, the y-axis represents the class labels on the training set, and the size of scattered points represents the
number of training samples with available labels for that worker.



We perform careful hyper-parameters tuning of all approaches. We set the local learning rate 7; for each worker to
m € {0.001,0.01,0.1} and the global learning rate 7, for server to , € {0.1,1.0,10.0}. The control parameter x for
FedProx (FedProxM) and « for FedDyn are fine-tuned within {0.001,0.01,0.1}. For control parameters (51, ($2), we set
B1,P2 € {0.1,0.5,0.9} unless otherwise specified. Also, we fix memory size m = 100 unless otherwise specified. For
the remaining tunable hyper-parameters of MOON (MOONM) and FedMLB (FedMLBM), we follow the settings of [17]
and [13], respectively. For fairness, the popular SGD procedure is employed to perform local update steps for each worker.
For all experiments, we fix batch size to 64 for all datasets. To ensure reliability, we report the average for each experiment
over 3 random seeds.

.2.2 Full Experimental Results
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Figure 9. Full test accuracy curves for GradMA-W as well as baselines on MNIST.
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Figure 10. Full test accuracy curves for GradMA-W as well as baselines on Tiny-Imagenet.
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Figure 11. Full test accuracy curves for GradMA-W as well as baselines on CIFAR-10 and CIFAR-100.
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Figure 12. Full test accuracy curves for GradMA-S as well as baselines on MNIST.
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Figure 14. Full test accuracy curves for GradMA-S as well as baselines on CIFAR-10 and CIFAR-100.
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Figure 15. Full test accuracy curves for GradMA as well as baselines on MNIST.
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Figure 16. Full test accuracy curves for GradMA as well as baselines on Tiny-Imagenet.
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Figure 17. Full test accuracy curves for GradMA as well as baselines on CIFAR-10 and CIFAR-100.
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Figure 18. Full test accuracy curves for GradMA, GradMA-S and GradMA-W on MNIST.
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Figure 19. Full test accuracy curves for GradMA, GradMA-S and GradMA-W on CIFAR-10 and CIFAR-100.
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Figure 20. Full test accuracy curves for GradMA, GradMA-S and GradMA-W on Tiny-Imagenet.
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Figure 21. Top test accuracy (%) overview for varying control parameters (/31,82) on MNIST and CIFAR-10.
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Figure 22. Full test accuracy curves for varying memory sizes m on MNIST and CIFAR-10.

3. Convergence Proof of GradMA

In this section, we provide the complete theoretical proof for convergence result of GranMA.

We first review the rule for i-th (i € [IN]) worker to update local model in Alg. 1 and Alg. 2, as follows:

gﬁ? = Vii(@)),

gél QP(g). G),
mgllﬂfmgzl ﬂlgﬁa

= [Vfi@) ), Vi@, 2l — ),

where 7 € [0,...,1 — 1] and wéfll =) =, wg )= wgl),mg()) =z (t > 0).
After receiving update directions sent by active workers the server updates the centralized model according to the follow-

ing update rule (see Alg. 1 and Alg. 3):

9
(10)
1)
12)

dir =5 Y dd =13 S il (13)
166} zes, =0
M1 = B1my + dyg, (14)
myr1 = QP (myy1, D), (15)
Lt41 = Lt — ﬂgmtﬂ, (16)
where t € [0,---,T — 1] and my = 0. Here, we omit the update rule of D in that Assumption 5 holds as long as the

information contained in D is meaningful, without needing to focus on the specific content of D.



Furthermore, we set d;+1 = d;4+1 + M1 — My yields:

Ty = By + dig, (17)

Tip] = Ty — NgMyy1. (18)

Now, we define an auxiliary sequence such that

1 b1
= — _ 19
Ut 1_615% 1_ﬁ133t 15 (19)
where ¢t > 0. If t = 0 then u; = ;.
Lemma .1 Define the sequence {u;}>o as in Eq. (19). According to Alg. 1, we have the following relationship
Mg 3
— U = — diqq.
Ut41 — Uyt 1- 5 t+1
Proof.  Using mathematical induction on Eq. (19), we get:
caset = 0,
Ui+l — U = UL — Ug
1 B 1 ( )
= €r1 — ro —Xg—  —\1 — X
-5 1—510 CTa-p
Mg -
= — = d
T
and case t > 0,
u U = 1 Tiy1 b xT 1 T + ! x
t41 — W = L1 — t— t+ %1
! =g =5 18 15
1
= ﬁ (($t+1 — ) — Bi(xy — J:tfl))
= 1_3 29/61 (myp1 — fimy) = — 1 igﬁl Jt+1~
Hence, the lemma is proved.
End Proof.

Lemma .2 Under Assumptions 2-4, then the following relationship generated according to Alg. 1 holds with n; < ﬁlou"
foranyte0,--- , T —1land T €[0,---, I —1],

1 i
5 3 B[fef} -

1€[N]

2
}SMFﬁﬁ+MFﬁf+mﬂﬁEHVﬂwmﬂ,

where the expectation IE is w.r.t the sampled active workers per communication round.

Proof.  For any worker ¢ € [N]and 7 € [1,--- ,I — 1], we have:

{Hmw—th |

=) |7
tT 1~ Lt — nlgt,r—l

:EU

(b) 1 ;
< (14 g7y ) B el = el?] 4 80 B 16 - a2 ) + E[IV A - VA@l?]

(i) i) (1) ?
ol == (a0~ gl + V)~ Ve + VA - V(e + V@) ]




FE[|Vfi(@) - V)] +E [nwmm}

1 i
(1 + 5 + 8D L2> E |l@f)_, — || + 8Infe} + 8Info? + SIE |V (@)

(©) 1
< (1 12 ) B[l - al?] + stfet + 8022 + SIGE (19 (0], 0)

where (a) holds by using the Eq. (12), (b) follows from the inequalities ||z +y||? < (1+ |z||?+21||y||?, =,y € R and

HZZ 1% < sz Llzill? 2 € R% and (c) holds by using the fact that
Then, recursively unrolling inequality (20), we get:

21— 1)

+ 8In?L? holds if i, <

1
I 1 = 21 1 4/10L1 "

T—1

) k
Y E [ngj; - mtm <3 (1 4 111) [8In?<? + 8Tn2p? + SIn?E [|V f (1) 2]
k=0

1€[N]
1+ L ' 1
I-1

(a)
< 5I [8Infe} + 8Infp® + SINFE [||V f(z¢)|*]]
<401 nie} + 40107 p* + 40P E ||V f (20) %] ,

<(I-1) [8I57<7 + 8In?p* + 8IPE [||V £ (w1)]%]]

k _ 1 \T T I
where () holds by using 2723 (14 717 ) = ey Yy ) ((1+74) -1)<u-1) <(1 +7) - 1> <

(1+75)
51.
So far, we complete the proof.
End Proof.
Lemma .3 Under Assumptions 2-4, then the following relationship generated according to Alg. 1 holds: for any t €
[0,---,T —1],
1 -1 |2
S BN a | S 4R + o)1+ 0P + AP (1 + IRLAE [V (@)
N i €[N] 7=0 7

where the expectation [E is w.r.t the sampled active workers per communication round.
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SEPp [
€[N 7=

I—1
syl
N i€[N] 7=0

I—1
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— 9 + VAi(@() = V(@) + V(@) = V(@) + V(@) ]
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)

2+ 28 | [ofl — | + 2 4 B [I95@01)
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(4)
miE r— Lt

< 412 (s%+p2+1E [||Vf(act)||2D +4IL2% 3 §]E U

i€[N] 7=0

]
(0)
Sar? (40 + B[V @)IP]) + 4112 (40707 + 0170 + 40P [|V £ (2)]])

< AT2(E2 + p?)(1 + 401202 L2) + 4T%(1 + 4012 L*)E [||Vf(xt)\|2}
2
where (a) and (b) result from the fact that HZfL x|l < N Zfil |lz:]|%,2; € R? and (c) uses the statement from

Lemma .2.
So far, the lemma is proved.

End Proof.

Lemma .4 Under Assumption 5, then the following relationship generated according to Alg. 1 holds: foranyt € [0,--- | T—

1],
E U

where the expectation IE is w.r.t the sampled active workers per communication round.
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~ 2 2 , G 2e
dtHH } bZZE Z II{@ESt}th(; * 1_%2,
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Proof.
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< 2E [lldus]]*] + 2B [ riness = masa )]

2
1 3 (i)
S dt+1

1€ESt
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®)
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- Zﬂ{zest};)gm S
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where (a) uses the fact that JtH =diy1 + My — My, and (b) results from the Eq. (13). Hence, the lemma is proved.
End Proof.

Lemma .5 Define the sequence {u,},>o as in Eq. (19), the following relationship generated according to Alg. 1 holds: for
anyt € [0,---, T —1],
2
Sl | o 28ty T
9.7 )
" (1—pB)* (1—52)

MT
o =

-1
Y E [”Ut - thz} 1%2182 Z E | I{ie S}
=0

1E[N] T=
where the expectation IE is w.r.t the sampled active workers per communication round.

Proof.  Recursively applying Eq. (17) to achieve the update rule for m, yields:

t
iy @3 Bt > 1, @

k=1



where (a) holds by mg = 0. Furthermore, building on equations (19) and (21), we get

b1 /81779 - 5177 : 8k
— = — _ = = d 22
U — Ty 1—51($t 1) 1—ﬁ1 z; (22)
Now, we define z; = Zk 15 = igf ,Vt > 1. Using Eq. (22) we obtain:
2
/8177
E [”ut —$t||2] = (170 ZE
(a) B2n? 2
LU [Hdk\ |
i 1779 ~ ik
S G gp L AE HdkH , 23)

where (a) follows from the fact that || S;_, % ay|? < S/_, <
from1l— gt < 1.

ag aj. € ]I{ h()ldS lf Cc = Ck, alld 0 IeSu]tS
NeXt, Summlng Eq. (2,;) over t € {0, st

T —1}(T > 1), we have:

T-1
ZE[|Ut_-'13t|| } < - 51779

(b) 2,2 -1 2
L iy el
(—ﬁntﬂ
T— I-1 2 2,22
(©  2B7n2n — (i) 261 e T
o P N~ I{ie S gl |+ 29 , (24)
i pise Z P B =Ty
where (a) uses ug = xg, (b) holds by using the inequality Zz:kl ,Bt_k = tgi ﬁ and (c¢) follows from the statement
of Lemma .4.
Hence, the lemma is proved.

End Proof.
Lemma .6 According to Assumptions 1-5 and setting n; < 4WLI’ NgM < IL(BEIS(N )1)_&7};; 0 and 3201°n?L? +
2. 272
6411797’%@;3? i L7) SéVNZSl) < 1, then the iterates generated by Alg. 1 satisfy: forallt € [0,--- , T — 1],
T—
8(1 = B1)(f (o) — f7) 2 o o100, 64IngmLef(1+40°p7L%) N -8
v Q}S 482 4 320122 [2e? 4 = Nah L l
go |:H f Ingan l m l (1 . 61)2 S(N . 1)
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where the expectation IE is w.r.t the sampled active workers per communication round

Proof.  Based on L-smooth of f and expectation w.r.t. the sampled active workers per communication round, we have

ELf (1)) < Bl ()] + BUTS (), w1 — )] + 5 [t —
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where (a) holds because of the statement of Lemma .1.
Firstly, we note that
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= — ng E Vf(ut Vf :ct Z dt+1 KVf(’LLt) Vf(a:t)7 'fht+1 — mt+1>}
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where (a) follows by using Eq. (13), and (b) holds because of the fact that i(a, b) < 3llal* + i|lal? (a,b € R?) where
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where (a) results from the fact that +(a, b) < %H‘IHQ + %”sz (a,b € RY) where @ — — lgil (¥ f () —

JBL -
b= (1,6311)2'52 (Myp1 — Myy1).

Secondly, we observe that
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where (a) follows from the fact that =(a,b) = 1(||a||? + [|b]|*> — ||a — b]|?), and () uses the inequality szlil zi|| <

N Ziil |z:||?, z; € R%. And we proceed by analysis T5 o,

Ty =~ B (V@) ivgs = mi)]
@ Ingm 0 )
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where (a) using the fact that +(a,b) < 3laf?> + 1|b]® (a,b € R?) where a = — \;%"Vf(:ct) and b =
\/% (M1 — Mypy1).
Next, we utilize the statement of Lemma .4 to derive the following upper bound of 75,
-1 ? 2.2
L =1 L} — (i Lnge
Ty=— "l Ud H] < e g {ies)tS g2 | + 99 .
P20 T T (= pyzs? gﬂ (resty o (1= B2(1=52)

Substituting the upper bounds of T 1, T4 2 into 17 and T5 1, T3 2 into T and T, T, T3 into (25) yields:
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< Blf(w)l 175 [<Vf(ut) vf(wt)vdt-&-lﬂ 15 F [<Vf($t)adt+1>} o= gt [HdtHH }
Ty T> T3
_ Ingme (1, oo (1-p1)L 2 B Ligeg
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Using the inequality (26), making a simple arrangement and doing the summation operation from ¢ = 0to 7" — 1, we get:

E[f(ur)] = E[f(uo)]
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where (a) holds by usmg the statement of Lemma .5. Next, we derive the upper bound for T}. To simplify the proof process
we set q ; = ZT 0 gt( l yields:
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where P{i € §;} = <.
Substituting equalities (28) and (29) into 7} yields:
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where (a) holds by using 3=, E [llgri — arj[1?] = 2N X icn E [llgeil?] — 2E {H 2ie(N] Qt,i||2:|, (b) results from the

fact that 1 — B(ﬁlf'éfff — ?1[ "QB’ZI)’; ]SV ((S 1) > 0 holds if ngm < T ﬁ%_(ﬁli)jfﬁf]; (1 ;71)) , and (c¢) follows from the statement of
Lemma .3.

Furthermore, substituting the upper bound of 7} into (27), we get:
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where (a) results from the fact that 1 — 407%p2L? — 8InymLO+40I L) N—s 5 1 polgs if 3201°n?L* +

1 (1—p51)2 S(N—-1) = 8
64Ingm L(1+401°n7L?) N_S
(1-81)° S(N-T)

< 1. Now, we use the statement of Assumption 1 yields:

[T = E[f(x0)] < E[f(ur)] — E[f(uo)]- (€2

This holds as ug = xo. Finally, the proof of the lemma is completed by substituting inequality (31) into inequality (30) and
making a simple arrangement.
End Proof.



