
Appendix
.1. Pseudocodes

Algorithm 5 FedAvgM (FedProxM)

1: Input: learning rates (ηl, ηg), control parameters µ and β1, synchronization interval I and the number of workers N .
2: Initial state x

(i)
0 = x0 ∈ Rd, ∀i ∈ [N ] and m0 = 0.

3: for t = 0, 1, . . . , T − 1 do
4: On server:
5: Server samples a subset St with S active workers from [N ] and transmits xt to St.
6: On workers:
7: for i ∈ St parallel do
8: Sets x(i)

t,0 = xt.
9: for τ = 0, 1, . . . , I − 1 do

10: x
(i)
t,τ+1 = x

(i)
t,τ − ηl∇fi(x(i)

t,τ ). (FedAvgM)

11: x
(i)
t,τ+1 = x

(i)
t,τ − ηl(∇fi(x(i)

t,τ ) + µ(x
(i)
t,τ − xt)). (FedProxM)

12: end for
13: Sends d(i)

t+1 = xt − x
(i)
t,I to server.

14: end for
15: On server:
16: dt+1 = 1

S

∑
i∈St

d
(i)
t+1, mt+1 = β1mt + dt+1.

17: xt+1 = xt − ηgmt+1.
18: Sends xt+1 to sampled active workers in the next round.
19: end for
20: Output: xT

Algorithm 6 MIFAM (MIFA, i.e., MIFAM with β1 = 0.0)

1: Input: learning rates (ηl, ηg), control parameter β1, synchronization interval I and the number of workers N .
2: Initial state x

(i)
0 = x0 ∈ Rd, g(i)

old = 0, ∀i ∈ [N ], d0 = 1
N

∑N
i=1 g

(i)
old and m0 = 0.

3: for t = 0, 1, . . . , T − 1 do
4: On server:
5: Server samples a subset St with S active workers from [N ] and transmits xt to St.
6: On workers:
7: for i ∈ St parallel do
8: Sets x(i)

t,0 = xt.
9: for τ = 0, 1, . . . , I − 1 do

10: x
(i)
t,τ+1 = x

(i)
t,τ − ηl∇fi(x(i)

t,τ ).
11: end for
12: Computes g(i)

t+1 = xt − x
(i)
t,I .

13: Sends d(i)
t+1 = g

(i)
t+1 − g

(i)
old to Server.

14: Sets g(i)
old = g

(i)
t+1.

15: end for
16: On server:
17: dt+1 = dt +

1
N

∑
i∈St

d
(i)
t+1, mt+1 = β1mt + dt+1.

18: xt+1 = xt − ηgmt+1.
19: Sends xt+1 to sampled active workers in the next round.
20: end for
21: Output: xT



Algorithm 7 GradMA-W

1: Input: learning rates (ηl, ηg), the number of all workers N , the number of active workers each round S and synchroniza-
tion interval I .

2: Initial state x
(i)
0 = x0 ∈ Rd, ∀i ∈ [N ].

3: for t = 0, 1, . . . , T − 1 do
4: On server:
5: Server samples a subset St with S active workers and transmits xt to St.
6: On workers:
7: for i ∈ St parallel do
8: x

(i)
t+1 = Worker Update(x(i)

t , xt, ηl, I),
9: sends d(i)

t+1 = xt − x
(i)
t+1 to server.

10: end for
11: On server:
12: dt+1 = 1

S

∑
i∈St

d
(i)
t+1, xt+1 = xt − ηgdt+1.

13: Sends xt+1 to sampled active workers in the next round.
14: end for
15: Output: xT

Algorithm 8 GradMA-S

1: Input: learning rates (ηl, ηg), the number of all workers N , the number of sampled active workers per communication
round S, control parameters (β1, β2), synchronization interval I and memory size m (S ≤ m ≤ min{d,N}).

2: Initial state x
(i)
0 = x0 ∈ Rd, ∀i ∈ [N ], m̃0 = 0.

3: Initial counter = {c(i) = 0},∀i ∈ [N ].
4: Initial memory state D = {}.
5: buf = {}, new buf = {}.
6: for t = 0, 1, . . . , T − 1 do
7: On server:
8: Server samples a subset St with S active workers and transmits xt to St.
9: counter,D, buf, new buf ← mem red (m,St, counter,D, buf, new buf).

10: On workers:
11: for i ∈ St parallel do
12: Sets x(i)

t,0 = xt.
13: for τ = 0, 1, . . . , I − 1 do
14: x

(i)
t,τ+1 = x

(i)
t,τ − ηl∇fi(x(i)

t,τ ).
15: end for
16: Sends d(i)

t+1 = xt − x
(i)
t,I to server.

17: end for
18: On server:
19: D,xt+1, m̃t+1 = Server Update([d(i)

t+1, i ∈ St], m̃t, D, ηg , β1, β2, buf , new buf ).
20: Sends xt+1 to sampled active workers in the next round.
21: new buf = {}.
22: end for
23: Output: xT

.2. Complete Empirical Study

.2.1 Experimental Setup

To gauge the effectiveness of Worker Update() and Server Update(), we perform ablation study of GradMA. For this pur-
pose, we design Alg. 7 (marked as GradMA-W) and Alg. 8 (marked as GradMA-S), as specified in Appendix .1. Mean-
while, we compare other baselines, including FedAvg [26], FedProx [19], MOON [17], FedMLB [13], Scaffold [12], Fed-



Dyn [1], MimeLite [11], MIFA [5] and slow-momentum variants of FedAvg, FedProx, MIFA, MOON and FedMLB (i.e.,
FedAvgM [7], FedProxM, MIFAM, MOONM and FedMLBM), in terms of test accuracy and communication efficiency in
different FL scenarios. For fairness, we divide the baselines into three groups based on FedAvg’s improvements on the worker
side, server side, or both. Furthermore, on top of GradMA-S, we empirically study the effect of the control parameters (β1,
β2) and verify the effectiveness of men red() by setting varying memory sizes m.

All our experiments are performed on a centralized network with 100 workers. And fix synchronization interval I = 5.
To explore the performances of the approaches, we set up multiple different scenarios w.r.t. the number of sampled active
workers S per communication round and data heterogeneity. Specifically, we set S ∈ {5, 10, 50}. Furthermore, we use
Dirichlet process Dp(ω) [1, 46] to strictly partition the training set of each dataset across 100 workers, where the scaling
parameter ω controls the degree of data heterogeneity across workers. Notably, a smaller ω corresponds to higher data
heterogeneity. We set ω ∈ {0.01, 0.1, 1.0}. A visualization of the data partitions for the four datasets at varying ω values can
be found in Fig. 8. Also, the original testing set (without partitioning) of each dataset is used to evaluate the performance of
the trained centralized model. For MNIST, a neural network (NN) with three linear hidden layers is implemented for each
worker. We fix the total number of iterations to 2500, i.e., T × I = 2500. For CIFAR-10 (CIFAR-100, Tiny-Imagenet),
each worker implements a Lenet-5 [16] (VGG-11 [31], Resnet20 [6]) architecture. We fix the total number of iterations to
5000 (10000, 10000), i.e., T × I = 5000 (10000, 10000).
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Figure 8. Data heterogeneity among workers is visualized on four datasets (MNIST, CIFAR-10, CIFAR-100 and Tiny-Imagenet), where
the x-axis represents the workers id, the y-axis represents the class labels on the training set, and the size of scattered points represents the
number of training samples with available labels for that worker.



We perform careful hyper-parameters tuning of all approaches. We set the local learning rate ηl for each worker to
ηl ∈ {0.001, 0.01, 0.1} and the global learning rate ηg for server to ηg ∈ {0.1, 1.0, 10.0}. The control parameter µ for
FedProx (FedProxM) and α for FedDyn are fine-tuned within {0.001, 0.01, 0.1}. For control parameters (β1, β2), we set
β1, β2 ∈ {0.1, 0.5, 0.9} unless otherwise specified. Also, we fix memory size m = 100 unless otherwise specified. For
the remaining tunable hyper-parameters of MOON (MOONM) and FedMLB (FedMLBM), we follow the settings of [17]
and [13], respectively. For fairness, the popular SGD procedure is employed to perform local update steps for each worker.
For all experiments, we fix batch size to 64 for all datasets. To ensure reliability, we report the average for each experiment
over 3 random seeds.

.2.2 Full Experimental Results
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Figure 9. Full test accuracy curves for GradMA-W as well as baselines on MNIST.

0 500 1000 1500 2000
0.00

0.02

0.04

0.06

0.08

0.10

te
st

 a
cc

ur
ac

y

(a) Tiny-Imagenet, = 0.01, S = 5

0 500 1000 1500 2000
0.00

0.10

0.20

0.30

0.40

(b) Tiny-Imagenet, = 1.0, S = 5

0 500 1000 1500 2000
0.00

0.10

0.20

0.30

0.40

(c) Tiny-Imagenet, = 1.0, S = 10

FedAvgFedProxFedMLBMOONScaffoldGradMA-W
Figure 10. Full test accuracy curves for GradMA-W as well as baselines on Tiny-Imagenet.
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Figure 11. Full test accuracy curves for GradMA-W as well as baselines on CIFAR-10 and CIFAR-100.
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Figure 12. Full test accuracy curves for GradMA-S as well as baselines on MNIST.
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Figure 13. Full test accuracy curves for GradMA-S as well as baselines on Tiny-Imagenet.

0 200 400 600 800 1000

0.20

0.40

0.60

0.80

te
st

 a
cc

ur
ac

y

(a) CIFAR-10, = 1.0, S = 10

0 200 400 600 800 1000

0.20

0.40

0.60

(b) CIFAR-10, = 0.1, S = 10

0 200 400 600 800 1000
0.10

0.15

0.20

0.25

0.30
(c) CIFAR-10, = 0.01, S = 10

0 500 1000 1500 2000
communication rounds

0.00

0.20

0.40

0.60

te
st

 a
cc

ur
ac

y

(d) CIFAR-100, = 0.1, S = 5

0 500 1000 1500 2000
communication rounds

0.00

0.20

0.40

0.60
(e) CIFAR-100, = 0.1, S = 10

0 500 1000 1500 2000
communication rounds

0.00

0.20

0.40

0.60

(f) CIFAR-100, = 0.1, S = 50

FedAvgMMIFAMIFAMGradMA-S
Figure 14. Full test accuracy curves for GradMA-S as well as baselines on CIFAR-10 and CIFAR-100.
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Figure 15. Full test accuracy curves for GradMA as well as baselines on MNIST.
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Figure 16. Full test accuracy curves for GradMA as well as baselines on Tiny-Imagenet.
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Figure 17. Full test accuracy curves for GradMA as well as baselines on CIFAR-10 and CIFAR-100.
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Figure 18. Full test accuracy curves for GradMA, GradMA-S and GradMA-W on MNIST.
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Figure 19. Full test accuracy curves for GradMA, GradMA-S and GradMA-W on CIFAR-10 and CIFAR-100.
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Figure 20. Full test accuracy curves for GradMA, GradMA-S and GradMA-W on Tiny-Imagenet.
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Figure 21. Top test accuracy (%) overview for varying control parameters (β1,β2) on MNIST and CIFAR-10.
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Figure 22. Full test accuracy curves for varying memory sizes m on MNIST and CIFAR-10.

.3. Convergence Proof of GradMA

In this section, we provide the complete theoretical proof for convergence result of GranMA.
We first review the rule for i-th (i ∈ [N ]) worker to update local model in Alg. 1 and Alg. 2, as follows:

g
(i)
t,τ = ∇fi(x(i)

t,τ ), (9)

G
(i)
t,τ = [∇fi(x(i)

t,τ−1),∇fi(xt),x
(i)
t,τ − xt], (10)

g̃
(i)
t,τ = QPl(g

(i)
t,τ ,G

(i)
t,τ ), (11)

x
(i)
t,τ+1 = x

(i)
t,τ − ηlg̃

(i)
t,τ , (12)

where τ ∈ [0, . . . , I − 1] and x
(i)
0,−1 = x

(i)
0 = x0, x(i)

t,−1 = x
(i)
t ,x

(i)
t,0 = xt (t > 0).

After receiving update directions sent by active workers, the server updates the centralized model according to the follow-
ing update rule (see Alg. 1 and Alg. 3):

dt+1 =
1

S

∑
i∈St

d
(i)
t+1 =

ηl
S

∑
i∈St

I−1∑
τ=0

g̃
(i)
t,τ , (13)

mt+1 = β1m̃t + dt+1, (14)
m̃t+1 = QPg(mt+1,D), (15)

xt+1 = xt − ηgm̃t+1, (16)

where t ∈ [0, · · · , T − 1] and m̃0 = 0. Here, we omit the update rule of D in that Assumption 5 holds as long as the
information contained in D is meaningful, without needing to focus on the specific content of D.



Furthermore, we set d̃t+1 = dt+1 + m̃t+1 −mt+1 yields:

m̃t+1 = β1m̃t + d̃t+1, (17)
xt+1 = xt − ηgm̃t+1. (18)

Now, we define an auxiliary sequence such that

ut =
1

1− β1
xt −

β1

1− β1
xt−1, (19)

where t > 0. If t = 0 then ut = xt.

Lemma .1 Define the sequence {ut}t≥0 as in Eq. (19). According to Alg. 1, we have the following relationship

ut+1 − ut = −
ηg

1− β1
d̃t+1.

Proof. Using mathematical induction on Eq. (19), we get:
case t = 0,

ut+1 − ut = u1 − u0

=
1

1− β1
x1 −

β1

1− β1
x0 − x0 =

1

1− β1
(x1 − x0)

= − ηg
1− β1

m̃1 = − ηg
1− β1

d̃1,

and case t > 0,

ut+1 − ut =
1

1− β1
xt+1 −

β1

1− β1
xt −

1

1− β1
xt +

β1

1− β1
xt−1

=
1

1− β1
((xt+1 − xt)− β1(xt − xt−1))

= − ηg
1− β1

(mt+1 − β1mt) = −
ηg

1− β1
d̃t+1.

Hence, the lemma is proved.
End Proof.

Lemma .2 Under Assumptions 2-4, then the following relationship generated according to Alg. 1 holds with ηl ≤ 1
4
√
10LI

:
for any t ∈ [0, · · · , T − 1] and τ ∈ [0, · · · , I − 1],

1

N

∑
i∈[N ]

E

[∥∥∥x(i)
t,τ − xt

∥∥∥2] ≤ 40I2η2l ε
2
l + 40I2η2l ρ

2 + 40I2η2lE
[
∥∇f(xt)∥2

]
,

where the expectation E is w.r.t the sampled active workers per communication round.

Proof. For any worker i ∈ [N ] and τ ∈ [1, · · · , I − 1], we have:

E

[∥∥∥x(i)
t,τ − xt

∥∥∥2]
(a)
= E

[∥∥∥x(i)
t,τ−1 − xt − ηlg̃

(i)
t,τ−1

∥∥∥2]
= E

[∥∥∥x(i)
t,τ−1 − xt − ηl

(
g̃
(i)
t,τ−1 − g

(i)
t,τ−1 +∇fi(x

(i)
t,τ−1)−∇fi(xt) +∇fi(xt)−∇f(xt) +∇f(xt)

)∥∥∥2]
(b)

≤
(
1 +

1

2I − 1

)
E

[
∥x(i)

t,τ−1 − xt∥2
]
+ 8Iη2l

[
E

[
∥g̃(i)

t,τ−1 − g
(i)
t,τ−1∥2

]
+E

[
∥∇fi(x(i)

t,τ−1)−∇fi(xt)∥2
]



+E
[
∥∇fi(xt)−∇f(xt)∥2

]
+E

[
∥∇f(xt)∥2

] ]
≤
(
1 +

1

2I − 1
+ 8Iη2l L

2

)
E

[
∥x(i)

t,τ−1 − xt∥2
]
+ 8Iη2l ε

2
l + 8Iη2l ρ

2 + 8Iη2lE
[
∥∇f(xt)∥2

]
(c)

≤
(
1 +

1

I − 1

)
E

[
∥x(i)

t,τ−1 − xt∥2
]
+ 8Iη2l ε

2
l + 8Iη2l ρ

2 + 8Iη2lE
[
∥∇f(xt)∥2

]
, (20)

where (a) holds by using the Eq. (12), (b) follows from the inequalities ∥x±y∥2 ≤ (1+ 1
2I−1 )∥x∥

2+2I∥y∥2,x,y ∈ Rd and∥∥∥∑N
i=1 xi

∥∥∥2 ≤ N
∑N

i=1 ∥xi∥2,xi ∈ Rd, and (c) holds by using the fact that 1
I−1 ≥

1
2I−1 + 8Iη2l L

2 holds if ηl ≤ 1
4
√
10LI

.
Then, recursively unrolling inequality (20), we get:

1

N

∑
i∈[N ]

E

[∥∥∥x(i)
t,τ − xt

∥∥∥2] ≤ τ−1∑
k=0

(
1 +

1

I − 1

)k [
8Iη2l ε

2
l + 8Iη2l ρ

2 + 8Iη2lE
[
∥∇f(xt)∥2

]]
≤ (I − 1)

[(
1 +

1

I − 1

)I

− 1

] [
8Iη2l ε

2
l + 8Iη2l ρ

2 + 8Iη2lE
[
∥∇f(xt)∥2

]]
(a)

≤ 5I
[
8Iη2l ε

2
l + 8Iη2l ρ

2 + 8Iη2lE
[
∥∇f(xt)∥2

]]
≤ 40I2η2l ε

2
l + 40I2η2l ρ

2 + 40I2η2lE
[
∥∇f(xt)∥2

]
,

where (a) holds by using
∑τ−1

k=0

(
1 + 1

I−1

)k
=

1−(1+ 1
I−1 )

τ

1−(1+ 1
I−1 )

= (I−1)
((

1 + 1
I−1

)τ
− 1
)
≤ (I−1)

((
1 + 1

I−1

)I
− 1

)
≤

5I .
So far, we complete the proof.

End Proof.

Lemma .3 Under Assumptions 2-4, then the following relationship generated according to Alg. 1 holds: for any t ∈
[0, · · · , T − 1],

1

N

∑
i∈[N ]

E

∥∥∥∥∥
I−1∑
τ=0

g̃
(i)
t,τ

∥∥∥∥∥
2
 ≤ 4I2(ε2l + ρ2)(1 + 40I2η2l L

2) + 4I2(1 + 40I2η2l L
2)E

[
∥∇f(xt)∥2

]
,

where the expectation E is w.r.t the sampled active workers per communication round.

Proof.

1

N

∑
i∈[N ]

E

∥∥∥∥∥
I−1∑
τ=0

g̃
(i)
t,τ

∥∥∥∥∥
2


(a)

≤ I
1

N

∑
i∈[N ]

I−1∑
τ=0

E

[∥∥∥g̃(i)
t,τ

∥∥∥2]

≤ I
1

N

∑
i∈[N ]

I−1∑
τ=0

E

[∥∥∥g̃(i)
t,τ − g

(i)
t,τ +∇fi(x(i)

t,τ )−∇fi(xt) +∇fi(xt)−∇f(xt) +∇f(xt)
∥∥∥2]

(b)

≤ 4I
1

N

∑
i∈[N ]

I−1∑
τ=0

[∥∥∥g̃(i)
t,τ − g

(i)
t,τ

∥∥∥2 +E [∥∥∥∇fi(x(i)
t,τ )−∇fi(xt)

∥∥∥2]+ ∥∇fi(xt)−∇f(xt)∥2 +E
[
∥∇f(xt)∥2

]]

≤ 4I
1

N

∑
i∈[N ]

I−1∑
τ=0

[
ε2l + L2

E

[∥∥∥x(i)
t,τ − xt

∥∥∥2]+ ρ2 +E
[
∥∇f(xt)∥2

]]



≤ 4I2
(
ε2l + ρ2 +E

[
∥∇f(xt)∥2

])
+ 4IL2 1

N

∑
i∈[N ]

I−1∑
τ=0

E

[∥∥∥x(i)
t,τ − xt

∥∥∥2]
(c)

≤ 4I2
(
ε2l + ρ2 +E

[
∥∇f(xt)∥2

])
+ 4I2L2

(
40I2η2l ε

2
l + 40I2η2l ρ

2 + 40I2η2lE
[
∥∇f(xt)∥2

])
≤ 4I2(ε2l + ρ2)(1 + 40I2η2l L

2) + 4I2(1 + 40I2η2l L
2)E

[
∥∇f(xt)∥2

]
where (a) and (b) result from the fact that

∥∥∥∑N
i=1 xi

∥∥∥2 ≤ N
∑N

i=1 ∥xi∥2,xi ∈ R
d, and (c) uses the statement from

Lemma .2.
So far, the lemma is proved.

End Proof.

Lemma .4 Under Assumption 5, then the following relationship generated according to Alg. 1 holds: for any t ∈ [0, · · · , T−
1],

E

[∥∥∥d̃t+1

∥∥∥2] ≤ 2η2l
S2
E


∥∥∥∥∥∥
∑
i∈[N ]

I{i ∈ St}
I−1∑
τ=0

g̃
(i)
t,τ

∥∥∥∥∥∥
2
+

2ε2g
1− β2

,

where the expectation E is w.r.t the sampled active workers per communication round.

Proof.

E

[∥∥∥d̃t+1

∥∥∥2] (a)

≤ E

[
∥dt+1 + m̃t+1 −mt+1∥2

]
≤ 2E

[
∥dt+1∥2

]
+ 2E

[
∥m̃t+1 −mt+1∥2

]
(b)

≤ 2E

∥∥∥∥∥ 1S ∑
i∈St

d
(i)
t+1

∥∥∥∥∥
2
+

2ε2g
1− β2

=
2η2l
S2
E


∥∥∥∥∥∥
∑
i∈[N ]

I{i ∈ St}
I−1∑
τ=0

g̃
(i)
t,τ

∥∥∥∥∥∥
2
+

2ε2g
1− β2

,

where (a) uses the fact that d̃t+1 = dt+1 + m̃t+1 −mt+1, and (b) results from the Eq. (13). Hence, the lemma is proved.
End Proof.

Lemma .5 Define the sequence {ut}t≥0 as in Eq. (19), the following relationship generated according to Alg. 1 holds: for
any t ∈ [0, · · · , T − 1],

T−1∑
t=0

E

[
∥ut − xt∥2

]
≤

2β2
1η

2
gη

2
l

(1− β1)4S2

T−1∑
t=0

E


∥∥∥∥∥∥
∑
i∈[N ]

I{i ∈ St}
I−1∑
τ=0

g̃
(i)
t,τ

∥∥∥∥∥∥
2
+

2β2
1η

2
gε

2
gT

(1− β1)4(1− β2)
,

where the expectation E is w.r.t the sampled active workers per communication round.

Proof. Recursively applying Eq. (17) to achieve the update rule for m̃t yields:

m̃t
(a)
=

t∑
k=1

βt−k
1 d̃k,∀t ≥ 1, (21)



where (a) holds by m̃0 = 0. Furthermore, building on equations (19) and (21), we get:

ut − xt =
β1

1− β1
(xt − xt−1) = −

β1ηg
1− β1

m̃t = −
β1ηg
1− β1

t∑
k=1

βt−k
1 d̃k. (22)

Now, we define zt =
∑t

k=1 β
t−k
1 =

1−βt
1

1−β1
,∀t ≥ 1. Using Eq. (22) we obtain:

E

[
∥ut − xt∥2

]
=

β2
1η

2
g

(1− β1)2
z2tE

∥∥∥∥∥
t∑

k=1

βt−k
1

zt
d̃k

∥∥∥∥∥
2


(a)

≤
β2
1η

2
g

(1− β1)2
zt

t∑
k=1

βt−k
1 E

[∥∥∥d̃k

∥∥∥2]
(b)

≤
β2
1η

2
g

(1− β1)3

t∑
k=1

βt−k
1 E

[∥∥∥d̃k

∥∥∥2] , (23)

where (a) follows from the fact that ∥
∑T

k=1
ck
c ak∥2 ≤

∑T
k=1

ci
c ∥ak∥2(ak ∈ Rd) holds if c =

∑T
k=1 ck, and (b) results

from 1− βt ≤ 1.
Next, summing Eq. (23) over t ∈ {0, · · · , T − 1}(T ≥ 1), we have:

T−1∑
t=0

E

[
∥ut − xt∥2

] (a)

≤
β2
1η

2
g

(1− β1)3

T−1∑
t=1

t∑
k=1

βt−k
1 E

[∥∥∥d̃k

∥∥∥2]

=
β2
1η

2
g

(1− β1)3

(
T−1∑
t=k

βt−k
1

)
T−1∑
k=1

E

[∥∥∥d̃k

∥∥∥2]
(b)

≤
β2
1η

2
g

(1− β1)4

T−1∑
t=1

E

[∥∥∥d̃t

∥∥∥2]
(c)

≤
2β2

1η
2
gη

2
l

(1− β1)4S2

T−1∑
t=0

E


∥∥∥∥∥∥
∑
i∈[N ]

I{i ∈ St}
I−1∑
τ=0

g̃
(i)
t,τ

∥∥∥∥∥∥
2
+

2β2
1η

2
gε

2
gT

(1− β1)4(1− β2)
, (24)

where (a) uses u0 = x0, (b) holds by using the inequality
∑T−1

t=k βt−k
1 =

1−βt
1

1−β1
≤ 1

1−β1
, and (c) follows from the statement

of Lemma .4.
Hence, the lemma is proved.

End Proof.

Lemma .6 According to Assumptions 1-5 and setting ηl ≤ 1
4
√
10LI

, ηgηl ≤ (1−β1)
2S(N−1)

IL(β1S(N−1)+4N(S−1)) and 320I2η2l L
2 +

64IηgηlL(1+40I2η2
l L

2)
(1−β1)2

N−S
S(N−1) ≤ 1, then the iterates generated by Alg. 1 satisfy: for all t ∈ [0, · · · , T − 1],

1

T

T−1∑
t=0

E

[
∥∇f(xt)∥2

]
≤ 8(1− β1)(f(x0)− f⋆)

IηgηlT
+ 8ε2l + 320I2η2l L

2ε2l +
64IηgηlLε

2
l (1 + 40I2η2l L

2)

(1− β1)2
N − S

S(N − 1)

+
20ηgLε

2
g

(1− β1)2(1− β2)Iηl
+

8ε2g
(1− β2)I2η2l

+ 320I2η2l L
2ρ2 +

64IηgηlLρ
2(1 + 40I2η2l L

2)

(1− β1)2
N − S

S(N − 1)
,

where the expectation E is w.r.t the sampled active workers per communication round.

Proof. Based on L-smooth of f and expectation w.r.t. the sampled active workers per communication round, we have:

E[f(ut+1)] ≤ E[f(ut)] +E [⟨∇f(ut),ut+1 − ut⟩] +
L

2
E

[
∥ut+1 − ut∥2

]



(a)
= E[f(ut)]−

ηg
1− β1

E

[〈
∇f(ut), d̃t+1

〉]
+

Lη2g
2(1− β1)2

E

[∥∥∥d̃t+1

∥∥∥2]
= E[f(ut)]−

ηg
1− β1

E

[〈
∇f(ut)−∇f(xt), d̃t+1

〉]
︸ ︷︷ ︸

T1

− ηg
1− β1

E

[〈
∇f(xt), d̃t+1

〉]
︸ ︷︷ ︸

T2

+
Lη2g

2(1− β1)2
E

[∥∥∥d̃t+1

∥∥∥2]︸ ︷︷ ︸
T3

,

(25)

where (a) holds because of the statement of Lemma .1.
Firstly, we note that

T1 = − ηg
1− β1

E

[〈
∇f(ut)−∇f(xt), d̃t+1

〉]
= − ηg

1− β1
E

[〈
∇f(ut)−∇f(xt),

1

S

∑
i∈St

d
(i)
t+1

〉]
− ηg

1− β1
E [⟨∇f(ut)−∇f(xt), m̃t+1 −mt+1⟩]

= − ηg
1− β1

E

〈∇f(ut)−∇f(xt),
1

N

∑
i∈[N ]

d
(i)
t+1

〉
︸ ︷︷ ︸

T1,1

− ηg
1− β1

E [⟨∇f(ut)−∇f(xt), m̃t+1 −mt+1⟩]︸ ︷︷ ︸
T1,2

.

We proceed by analysis T1,1,

T1,1 = − ηg
1− β1

E

〈∇f(ut)−∇f(xt),
1

N

∑
i∈[N ]

d
(i)
t+1

〉
(a)
= − ηg

1− β1
E

〈∇f(ut)−∇f(xt),
ηl
N

∑
i∈[N ]

I−1∑
τ=0

g̃
(i)
t,τ

〉
(b)

≤ 1− β1

2β1L
E
[
∥∇f(ut)−∇f(xt)∥2

]
+

β1Lη
2
gη

2
l

2(1− β1)3
E


∥∥∥∥∥∥ 1

N

∑
i∈[N ]

I−1∑
τ=0

g̃
(i)
t,τ

∥∥∥∥∥∥
2


≤ (1− β1)L

2β1
E
[
∥ut − xt∥2

]
+

β1Lη
2
gη

2
l

2(1− β1)3N2
E


∥∥∥∥∥∥
∑
i∈[N ]

I−1∑
τ=0

g̃
(i)
t,τ

∥∥∥∥∥∥
2
 ,

where (a) follows by using Eq. (13), and (b) holds because of the fact that ±⟨a, b⟩ ≤ 1
2∥a∥

2 + 1
2∥a∥

2 (a, b ∈ Rd) where

a = −
√
1−β1√
β1L

(∇f(ut)−∇f(xt)) and b =
√
β1Lηgηl

(1−β1)3/2
1
N

∑
i∈[N ]

∑I−1
τ=0 g̃

(i)
t,τ . And we proceed by analysis T1,2,

T1,2 = − ηg
1− β1

E [⟨∇f(ut)−∇f(xt), m̃t+1 −mt+1⟩]

(a)

≤ 1− β1

2β1L
E

[
∥∇f(ut)−∇f(xt)∥2

]
+

β1Lη
2
g

2(1− β1)3
E

[
∥m̃t+1 −mt+1∥2

]
≤ (1− β1)L

2β1
E

[
∥ut − xt∥2

]
+

β1Lη
2
gε

2
g

2(1− β1)3(1− β2)
,

where (a) results from the fact that ±⟨a, b⟩ ≤ 1
2∥a∥

2 + 1
2∥b∥

2 (a, b ∈ Rd) where a = −
√
1−β1√
β1L

(∇f(ut) − ∇f(xt)) and

b =
√
β1Lηg

(1−β1)3/2
(m̃t+1 −mt+1).

Secondly, we observe that

T2 = − ηg
1− β1

E

[〈
∇f(xt), d̃t+1

〉]



= − ηg
1− β1

E [⟨∇f(xt),dt+1⟩]︸ ︷︷ ︸
T2,1

− ηg
1− β1

E [⟨∇f(xt), m̃t+1 −mt+1⟩]︸ ︷︷ ︸
T2,2

.

We proceed by analysis T2,1,

T2,1 = − ηg
1− β1

E [⟨∇f(xt),dt+1⟩]

= − ηg
1− β1

E

〈∇f(xt),
ηl
N

∑
i∈[N ]

I−1∑
τ=0

g̃
(i)
t,τ

〉
= − ηg

1− β1
E

〈∇f(xt),
ηl
N

∑
i∈[N ]

I−1∑
τ=0

g̃
(i)
t,τ + ηlI∇f(xt)− ηlI∇f(xt)

〉
= − Iηgηl

1− β1
E

[
∥∇f(xt)∥2

]
+

ηg
1− β1

E

〈−√ηlI∇f(xt),

√
ηl√
IN

∑
i∈[N ]

I−1∑
τ=0

(
g̃
(i)
t,τ −∇fi(xt)

)〉
(a)
= − Iηgηl

1− β1
E

[
∥∇f(xt)∥2

]
+

ηg
1− β1

E

[
ηlI

2
∥∇f(xt)∥2 +

ηl
2IN2

∥∥∥∥∥∥
∑
i∈[N ]

I−1∑
τ=0

(
g̃
(i)
t,τ −∇fi(xt)

)∥∥∥∥∥∥
2

− ηl
2IN2

∥∥∥∥∥∥
∑
i∈[N ]

I−1∑
τ=0

g̃
(i)
t,τ

∥∥∥∥∥∥
2 ]

= − Iηgηl
2(1− β1)

E

[
∥∇f(xt)∥2

]
+

ηgηl
2I(1− β1)N2

E

∥∥∥∥∥∥
∑
i∈[N ]

I−1∑
τ=0

(
g̃
(i)
t,τ − g

(i)
t,τ +∇fi(x(i)

t,τ )−∇fi(xt)
)∥∥∥∥∥∥

2

− ηgηl
2I(1− β1)N2

E

∥∥∥∥∥∥
∑
i∈[N ]

I−1∑
τ=0

g̃
(i)
t,τ

∥∥∥∥∥∥
2

(b)

≤ − Iηgηl
2(1− β1)

E

[
∥∇f(xt)∥2

]
+

ηgηl
(1− β1)N

∑
i∈[N ]

I−1∑
τ=0

[
E

∥∥∥g̃(i)
t,τ − g

(i)
t,τ

∥∥∥2 +E∥∥∥∇fi(x(i)
t,τ )−∇fi(xt)

∥∥∥2]

− ηgηl
2I(1− β1)N2

E

∥∥∥∥∥∥
∑
i∈[N ]

I−1∑
τ=0

g̃
(i)
t,τ

∥∥∥∥∥∥
2

≤ − Iηgηl
2(1− β1)

E

[
∥∇f(xt)∥2

]
+

Iηgηlε
2
l

(1− β1)
+

ηgηlL
2

(1− β1)N

∑
i∈[N ]

I−1∑
τ=0

E

[∥∥∥x(i)
t,τ − xt

∥∥∥2]

− ηgηl
2I(1− β1)N2

E

∥∥∥∥∥∥
∑
i∈[N ]

I−1∑
τ=0

g̃
(i)
t,τ

∥∥∥∥∥∥
2

,

where (a) follows from the fact that ±⟨a, b⟩ = 1
2 (∥a∥

2 + ∥b∥2 − ∥a − b∥2), and (b) uses the inequality
∥∥∥∑N

i=1 xi

∥∥∥2 ≤
N
∑N

i=1 ∥xi∥2,xi ∈ Rd. And we proceed by analysis T2,2,

T2,2 = − ηg
1− β1

E [⟨∇f(xt), m̃t+1 −mt+1⟩]

(a)

≤ Iηgηl
4(1− β1)

E
[
∥∇f(xt)∥2

]
+

ηg
(1− β1)Iηl

E
[
∥m̃t+1 −mt+1∥2

]



≤ Iηgηl
4(1− β1)

E
[
∥∇f(xt)∥2

]
+

ηgε
2
g

(1− β1)(1− β2)Iηl
,

where (a) using the fact that ±⟨a, b⟩ ≤ 1
2∥a∥

2 + 1
2∥b∥

2 (a, b ∈ R
d) where a = −

√
Iηl√
2
∇f(xt) and b =

√
2√

Iηl
(m̃t+1 −mt+1).

Next, we utilize the statement of Lemma .4 to derive the following upper bound of T3,

T3 =
Lη2g

2(1− β1)2
E

[∥∥∥d̃t+1

∥∥∥2] ≤ Lη2gη
2
l

(1− β1)2S2
E


∥∥∥∥∥∥
∑
i∈[N ]

I{i ∈ St}
I−1∑
τ=0

g̃
(i)
t,τ

∥∥∥∥∥∥
2
+

Lη2gε
2
g

(1− β1)2(1− β2)
.

Substituting the upper bounds of T1,1, T1,2 into T1 and T2,1, T2,2 into T2 and T1, T2, T3 into (25) yields:

E[f(ut+1)]

≤ E[f(ut)]−
ηg

1− β1
E

[〈
∇f(ut)−∇f(xt), d̃t+1

〉]
︸ ︷︷ ︸

T1

− ηg
1− β1

E

[〈
∇f(xt), d̃t+1

〉]
︸ ︷︷ ︸

T2

+
Lη2g

2(1− β1)2
E

[∥∥∥d̃t+1

∥∥∥2]︸ ︷︷ ︸
T3

≤ E[f(ut)]−
Iηgηl

(1− β1)

(
1

4
− 40I2η2l L

2

)
E

[
∥∇f(xt)∥2

]
+

(1− β1)L

β1
E
[
∥ut − xt∥2

]
+

β1Lη
2
gε

2
g

2(1− β1)3(1− β2)

+
Iηgηlε

2
l

(1− β1)
+

ηgε
2
g

(1− β1)(1− β2)Iηl
+

40I3ηgη
3
l L

2ε2l
(1− β1)

+
40I3ηgη

3
l L

2ρ2

(1− β1)
+

Lη2gε
2
g

(1− β1)2(1− β2)

− ηgηl
2I(1− β1)N2

(
1− β1IηgηlL

(1− β1)2

)
E


∥∥∥∥∥∥
∑
i∈[N ]

I−1∑
τ=0

g̃
(i)
t,τ

∥∥∥∥∥∥
2
+

Lη2gη
2
l

(1− β1)2S2
E


∥∥∥∥∥∥
∑
i∈[N ]

I{i ∈ St}
I−1∑
τ=0

g̃
(i)
t,τ

∥∥∥∥∥∥
2
 . (26)

Using the inequality (26), making a simple arrangement and doing the summation operation from t = 0 to T − 1, we get:

E[f(uT )]−E[f(u0)]

≤ − Iηgηl
(1− β1)

(
1

4
− 40I2η2l L

2

) T−1∑
t=0

E

[
∥∇f(xt)∥2

]
+

(1− β1)L

β1

T−1∑
t=0

E
[
∥ut − xt∥2

]
+

β1Lη
2
gε

2
gT

2(1− β1)3(1− β2)

+
Iηgηlε

2
l T

(1− β1)
+

ηgε
2
gT

(1− β1)(1− β2)Iηl
+

40I3ηgη
3
l L

2ε2l T

(1− β1)
+

40I3ηgη
3
l L

2ρ2T

(1− β1)
+

Lη2gε
2
gT

(1− β1)2(1− β2)

− ηgηl
2I(1− β1)N2

(
1− β1IηgηlL

(1− β1)2

) T−1∑
t=0

E


∥∥∥∥∥∥
∑
i∈[N ]

I−1∑
τ=0

g̃
(i)
t,τ

∥∥∥∥∥∥
2
+

Lη2gη
2
l

(1− β1)2S2

T−1∑
t=0

E


∥∥∥∥∥∥
∑
i∈[N ]

I{i ∈ St}
I−1∑
τ=0

g̃
(i)
t,τ

∥∥∥∥∥∥
2


(a)

≤ − Iηgηl
(1− β1)

(
1

4
− 40I2η2l L

2

) T−1∑
t=0

E

[
∥∇f(xt)∥2

]
+

5β1η
2
gLε

2
gT

2(1− β1)3(1− β2)

+
Iηgηlε

2
l T

(1− β1)
+

ηgε
2
gT

(1− β1)(1− β2)Iηl
+

40I3ηgη
3
l L

2ε2l T

(1− β1)
+

40I3ηgη
3
l L

2ρ2T

(1− β1)
+

η2gLε
2
gT

(1− β1)2(1− β2)

− ηgηl
2I(1− β1)N2

(
1− β1IηgηlL

(1− β1)2

) T−1∑
t=0

E


∥∥∥∥∥∥
∑
i∈[N ]

I−1∑
τ=0

g̃
(i)
t,τ

∥∥∥∥∥∥
2
+

2η2gη
2
l L

(1− β1)3S2

T−1∑
t=0

E


∥∥∥∥∥∥
∑
i∈[N ]

I{i ∈ St}
I−1∑
τ=0

g̃
(i)
t,τ

∥∥∥∥∥∥
2


︸ ︷︷ ︸
T4

,

(27)



where (a) holds by using the statement of Lemma .5. Next, we derive the upper bound for T4. To simplify the proof process,
we set qt,i =

∑I−1
τ=0 g̃

(i)
t,τ yields:

E


∥∥∥∥∥∥
∑
i∈[N ]

I−1∑
τ=0

g̃
(i)
t,τ

∥∥∥∥∥∥
2
 = E


∥∥∥∥∥∥
∑
i∈[N ]

qt,i

∥∥∥∥∥∥
2


=
∑
i∈[N ]

E

[
∥qt,i∥2

]
+
∑
i̸=j

E [⟨qt,i, qt,j⟩]

=
∑
i∈[N ]

NE
[
∥qt,i∥2

]
− 1

2

∑
i ̸=j

E
[
∥qt,i − qt,j∥2

]
, (28)

and

E


∥∥∥∥∥∥
∑
i∈[N ]

I{i ∈ St}
I−1∑
τ=0

g̃
(i)
t,τ

∥∥∥∥∥∥
2
 = E


∥∥∥∥∥∥
∑
i∈[N ]

P{i ∈ St}qt,i

∥∥∥∥∥∥
2


=
∑
i∈[N ]

P{i ∈ St}E
[
∥qt,i∥2

]
+
∑
i̸=j

P{i, j ∈ St}E [⟨qt,i, qt,j⟩]

=
S

N

∑
i∈[N ]

E

[
∥qt,i∥2

]
+

S(S − 1)

N(N − 1)

∑
i ̸=j

E [⟨qt,i, qt,j⟩]

=
S2

N

∑
i∈[N ]

E

[
∥qt,i∥2

]
− S(S − 1)

2N(N − 1)

∑
i ̸=j

E
[
∥qt,i − qt,j∥2

]
, (29)

where P{i ∈ St} = S
N .

Substituting equalities (28) and (29) into T4 yields:

T4 = − ηgηl
2I(1− β1)N2

(
1− β1IηgηlL

(1− β1)2

) T−1∑
t=0

E


∥∥∥∥∥∥
∑
i∈[N ]

I−1∑
τ=0

g̃
(i)
t,τ

∥∥∥∥∥∥
2
+

2η2gη
2
l L

(1− β1)3S2

T−1∑
t=0

E


∥∥∥∥∥∥
∑
i∈[N ]

I{i ∈ St}
I−1∑
τ=0

g̃
(i)
t,τ

∥∥∥∥∥∥
2


= − ηgηl
2I(1− β1)N2

(
1− β1IηgηlL

(1− β1)2

) T−1∑
t=0

∑
i∈[N ]

NE
[
∥qt,i∥2

]
− 1

2

∑
i ̸=j

E
[
∥qt,i − qt,j∥2

]
+

2η2gη
2
l L

(1− β1)3S2

T−1∑
t=0

S2

N

∑
i∈[N ]

E

[
∥qt,i∥2

]
− S(S − 1)

2N(N − 1)

∑
i̸=j

E
[
∥qt,i − qt,j∥2

]
= − ηgηl

2I(1− β1)N

(
1− β1IηgηlL

(1− β1)2
− 4IηgηlL

(1− β1)2

) T−1∑
t=0

∑
i∈[N ]

E

[
∥qt,i∥2

]

+
ηgηl

4I(1− β1)N2

(
1− β1IηgηlL

(1− β1)2
− 4IηgηlL

(1− β1)2
N(S − 1)

S(N − 1)

) T−1∑
t=0

∑
i ̸=j

E
[
∥qt,i − qt,j∥2

]
(a)
= − ηgηl

2I(1− β1)N

(
1− β1IηgηlL

(1− β1)2
− 4IηgηlL

(1− β1)2

) T−1∑
t=0

∑
i∈[N ]

E

[
∥qt,i∥2

]

+
ηgηl

4I(1− β1)N2

(
1− β1IηgηlL

(1− β1)2
− 4IηgηlL

(1− β1)2
N(S − 1)

S(N − 1)

) T−1∑
t=0

2N ∑
i∈[N ]

E
[
∥qt,i∥2

]
− 2E

∥ ∑
i∈[N ]

qt,i∥2




=
2η2gη

2
l L

N(1− β1)3

(
1− N(S − 1)

S(N − 1)

) T−1∑
t=0

∑
i∈[N ]

E

[
∥qt,i∥2

]

− ηgηl
2I(1− β1)N2

(
1− β1IηgηlL

(1− β1)2
− 4IηgηlL

(1− β1)2
N(S − 1)

S(N − 1)

) T−1∑
t=0

E

∥ ∑
i∈[N ]

qt,i∥2


=
2η2gη

2
l L

(1− β1)3
N − S

NS(N − 1)

T−1∑
t=0

∑
i∈[N ]

E

[
∥qt,i∥2

]

− ηgηl
2I(1− β1)N2

(
1− β1IηgηlL

(1− β1)2
− 4IηgηlL

(1− β1)2
N(S − 1)

S(N − 1)

) T−1∑
t=0

E

∥ ∑
i∈[N ]

qt,i∥2


(b)

≤
2η2gη

2
l L

(1− β1)3
N − S

NS(N − 1)

T−1∑
t=0

∑
i∈[N ]

E

[
∥qt,i∥2

]
(c)

≤
2η2gη

2
l L

(1− β1)3
N − S

S(N − 1)

[
4I2(ε2l + ρ2)(1 + 40I2η2l L

2)T + 4I2(1 + 40I2η2l L
2)

T−1∑
t=0

E

[
∥∇f(xt)∥2

]]

=
8I2η2gη

2
l L(ε

2
l + ρ2)(1 + 40I2η2l L

2)T

(1− β1)3
N − S

S(N − 1)
+

8I2η2gη
2
l L(1 + 40I2η2l L

2)

(1− β1)3
N − S

S(N − 1)

T−1∑
t=0

E

[
∥∇f(xt)∥2

]
,

where (a) holds by using
∑

i̸=j E
[
∥qt,i − qt,j∥2

]
= 2N

∑
i∈[N ]E

[
∥qt,i∥2

]
− 2E

[
∥
∑

i∈[N ] qt,i∥2
]
, (b) results from the

fact that 1− β1IηgηlL
(1−β1)2

− 4IηgηlL
(1−β1)2

N(S−1)
S(N−1) ≥ 0 holds if ηgηl ≤ (1−β1)

2S(N−1)
IL(β1S(N−1)+4N(S−1)) , and (c) follows from the statement of

Lemma .3.
Furthermore, substituting the upper bound of T4 into (27), we get:

E[f(uT )]−E[f(u0)]

≤ − Iηgηl
(1− β1)

(
1

4
− 40I2η2l L

2

) T−1∑
t=0

E

[
∥∇f(xt)∥2

]
+

5β1η
2
gLε

2
gT

2(1− β1)3(1− β2)

+
Iηgηlε

2
l T

(1− β1)
+

ηgε
2
gT

(1− β1)(1− β2)Iηl
+

40I3ηgη
3
l L

2ε2l T

(1− β1)
+

40I3ηgη
3
l L

2ρ2T

(1− β1)
+

η2gLε
2
gT

(1− β1)2(1− β2)

− ηgηl
2I(1− β1)N2

(
1− β1IηgηlL

(1− β1)2

) T−1∑
t=0

E


∥∥∥∥∥∥
∑
i∈[N ]

I−1∑
τ=0

g̃
(i)
t,τ

∥∥∥∥∥∥
2
+

2η2gη
2
l L

(1− β1)3S2

T−1∑
t=0

E


∥∥∥∥∥∥
∑
i∈[N ]

I{i ∈ St}
I−1∑
τ=0

g̃
(i)
t,τ

∥∥∥∥∥∥
2


︸ ︷︷ ︸
T4

≤ − Iηgηl
(1− β1)

(
1

4
− 40I2η2l L

2

) T−1∑
t=0

E

[
∥∇f(xt)∥2

]
+

5β1η
2
gLε

2
gT

2(1− β1)3(1− β2)

+
Iηgηlε

2
l T

(1− β1)
+

ηgε
2
gT

(1− β1)(1− β2)Iηl
+

40I3ηgη
3
l L

2ε2l T

(1− β1)
+

40I3ηgη
3
l L

2ρ2T

(1− β1)
+

η2gLε
2
gT

(1− β1)2(1− β2)

+
8I2η2gη

2
l L(ε

2
l + ρ2)(1 + 40I2η2l L

2)T

(1− β1)3
N − S

S(N − 1)
+

8I2η2gη
2
l L(1 + 40I2η2l L

2)

(1− β1)3
N − S

S(N − 1)

T−1∑
t=0

E

[
∥∇f(xt)∥2

]
= − Iηgηl

(1− β1)

(
1

4
− 40I2η2l L

2 − 8IηgηlL(1 + 40I2η2l L
2)

(1− β1)2
N − S

S(N − 1)

) T−1∑
t=0

E

[
∥∇f(xt)∥2

]
+

5β1η
2
gLε

2
gT

2(1− β1)3(1− β2)

+
Iηgηlε

2
l T

(1− β1)
+

ηgε
2
gT

(1− β1)(1− β2)Iηl
+

40I3ηgη
3
l L

2ε2l T

(1− β1)
+

40I3ηgη
3
l L

2ρ2T

(1− β1)
+

η2gLε
2
gT

(1− β1)2(1− β2)



+
8I2η2gη

2
l L(ε

2
l + ρ2)(1 + 40I2η2l L

2)T

(1− β1)3
N − S

S(N − 1)

(a)

≤ − Iηgηl
8(1− β1)

T−1∑
t=0

E

[
∥∇f(xt)∥2

]
+

5β1η
2
gLε

2
gT

2(1− β1)3(1− β2)
+

Iηgηlε
2
l T

(1− β1)
+

ηgε
2
gT

(1− β1)(1− β2)Iηl
+

40I3ηgη
3
l L
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where (a) results from the fact that 1
4 − 40I2η2l L

2 − 8IηgηlL(1+40I2η2
l L

2)
(1−β1)2

N−S
S(N−1) ≥ 1

8 holds if 320I2η2l L
2 +

64IηgηlL(1+40I2η2
l L

2)
(1−β1)2

N−S
S(N−1) ≤ 1. Now, we use the statement of Assumption 1 yields:

f⋆ −E[f(x0)] ≤ E[f(uT )]−E[f(u0)]. (31)

This holds as u0 = x0. Finally, the proof of the lemma is completed by substituting inequality (31) into inequality (30) and
making a simple arrangement.

End Proof.


