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A. Dataset
In this section, we describe more details of the dataset

collection, annotation, and the process of dividing Seen /
Unseen, as well as provide more statistical analysis.

A.1. Collection Details

Since AGD20K [16] contains a large number of exo-
centric images of human-object interaction and egocentric
images corresponding to interacting objects, it is available
to provide pairs of interactive images and non-interactive
images for our Contact-driven Affordance Learning (CAL)
dataset. On the other hand, the PADv2 [30] dataset con-
tains 39 affordance categories, covering a total of 103 ob-
ject categories, from which we considered collecting a large
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number of data to enrich the CAL dataset further. Specifi-
cally, we choose 23 affordance categories frequently occur-
ring daily. And then, we retrieve the corresponding images
from the above two datasets according to the affordance cat-
egories and guarantee that the number of interactive and
non-interactive images is approximately equivalent. As a
result, we obtain 2, 689 interactive images and 2, 569 non-
interactive images. The interactive and non-interactive im-
age examples are shown in Fig. 1 and Fig. 2, respectively.

Although the dataset contains a small number of images,
the input is determined by interactive and non-interactive
image pairs. The combination of two images provides a
multitude of variations (the trainset can combine a total of
170K pairs). Besides, affordance is not a particularly dif-
ficult property for humans to understand, making it easy to
scale the number of images. The number of input pairs will
increase exponentially with the number of images.

A.2. Annotation Details

We also assign object labels to the interactive and non-
interactive images according to their object categories. Due
to affordance means the “action possibilities” on objects,
and it is relatively simple for a human with normal cognitive
abilities to perceive. Following Gebru et al [8], we employ
10 random volunteers from the laboratory, ensuring that 3
volunteers annotated each image. We establish the follow-
ing rules before labeling: (1) Only annotate the tools as the
dataset focuses on labeling interactions with tools. The pas-
sive interaction of objects (such as the “cut” involves hand
contact with vegetables) will be considered in future work.
(2) Label the contact regions of “Hands”, “Feet” etc. (3)
Ignore the differences between the left & right in hands and
feet. (4) The points are marked more intensively for regions
where interaction is more frequent. During dataset process-
ing, we select the average of all annotated for broadly sim-
ilar regions and the majority of annotated for controversial
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Figure 1. Interactive image examples. Some examples of interactive images and annotations from the CAL dataset.

Figure 2. Non-interactive image examples. Some examples of non-interactive images and annotations from the CAL dataset.



regions. For the different body part contact regions in the
interactive image and the corresponding affordance regions
in the non-interactive image, we refer to previous works on
affordance/saliency dataset annotation [1, 2, 7, 12] and use
the heatmap representation for annotation. Compared to as-
signing an accurate label to each pixel, heatmap annotation
is more descriptive of “action possibilities” (i.e.affordance).
During the mask generation process, we apply Gaussian
blur to all points and normalize them to obtain the corre-
sponding heatmap. Some images and annotations are shown
in Fig. 1 and Fig. 2.

A.3. Dataset Division

To comprehensively evaluate the performance of differ-
ent affordance learning methods and their ability to gener-
alize to unseen interactions/objects, two different divisions,
i.e., Seen and Unseen, are provided. The affordance cate-
gories of the training and test sets in Seen overlap, and we
split the interactive and non-interactive images according to
7 : 3, respectively. Then we randomly pair the interactive
and non-interactive images in the test set as input and ob-
tain 4, 484 pairs of inputs during testing. For the Unseen
setting, we choose the categories of “Brush with”, “Cut”,
“Drink with”, “Lie on”, “Lift” and “Stick” as the test set
and the remaining ones as the training set, ensuring that the
test set corresponds to human-object interactions covering
all body parts. Similarly to Seen setting, we randomly se-
lect pairs of interactive and non-interactive images belong-
ing to the same affordance category, resulting in a total of
3, 297 testing input pairs.

B. Benchmark
B.1. Metrics

Most affordance learning methods [4, 15, 18, 20] seg-
ment precise affordance regions. Thus the metrics they
employ are not suitable for evaluating the accuracy of the
heatmap of objects’ interactable regions. Referring to pre-
vious works related to predicting heatmap [2, 7, 13, 16, 19],
we choose KLD [2], SIM [25] and NSS [21] to evaluate
the quality of the predicted heatmap in terms of distribution
differences, similarity, and correlation.

- Kullback-Leibler Divergence (KLD) [2] measures the
distribution difference between the prediction (P ) and
the ground truth (Q). It is computed as follows:

KLD
(
P,QD

)
=

∑
i

QD
i log

(
ϵ+

QD
i

ϵ+ Pi

)
, (1)

where ϵ is a regularization constant.

- Similarity (SIM) [25] measures the similarity between
the prediction map (P ) and the ground truth map (QD).

Table 1. The dimensions, domains of definition, and meanings
of the symbols used in the proposed approach.

Dimensions Domains Meanings
Iin 3× 224× 224 [-1,1] Interactive image
Inon 3× 224× 224 [-1,1] Non-interactive image
P 17× 2 [0,1] Human pose

Xini ci × hi × wi [−∞,+∞] Interactive feature
Xnoni ci × hi × wi [−∞,+∞] Non-interactive feature
Xi

c c× l [−∞,+∞] Cross-branch tokens
Xm

in/X
m
non c× hw [−∞,+∞] The IFE module outputs

F̂in/F̂non c
′ × h1 × w1 [−∞,+∞] High resolution features

Din Ncls × h1 × w1 [0, 1] Contact region prediction
XP 17× c

′
[−∞,+∞] Pose feature

Hj c
′ × h1 × w1 [−∞,+∞] Contact region feature

H̄j c
′ × h1 × w1 [−∞,+∞] Interactive affinity

Dnon Ncls × h1 × w1 [0, 1] Non-interaction prediction

It is computed as follows:

SIM
(
P,QD

)
=

∑
i

min
(
Pi, Q

D
i

)
, (2)

where
∑

i Pi =
∑

i Q
D
i = 1.

- Normalized Scanpath Saliency (NSS) [21] measures the
correspondence between the prediction map (P ) and
the ground truth (QD). It is computed as follows:

NSS
(
P,QD

)
=

1

N

∑
i

P̂ ×QD
i , (3)

where N =
∑

i Q
D
i , P̂ = P−µ(P )

σ(P ) . µ (P ) and σ (P )

are the mean and standard deviation of P , respectively.

B.2. Comparison Methods

To demonstrate the superiority of our model, we se-
lect three segmentation models (PSPNet [31], DLabV3+
[3], SegFormer [27]), three human pose estimation mod-
els (HRNet [24],ViTPose [28], HRFormer [29]), and one
few-shot segmentation model (HSNet [17]) for comparison.
Firstly, the task can be considered a segmentation problem
for predicting the different interaction regions; therefore,
we choose semantic segmentation models. Secondly, hu-
man pose keypoints can suppress the effects of diverse inter-
actions and occlusion to obtain a better interactive affinity.
The precise prediction of human pose keypoints can more
accurately perceive the characteristics of the body part in-
teraction region. Therefore, this paper chooses the human
pose estimation models as a comparison. Thirdly, The clos-
est input setting to this task is the few-shot segmentation,
and we choose the advanced model for a fairer comparison.

B.3. Implementation Details

We input both interactive and non-interactive images into
the network for training for the segmentation and human



Figure 3. Different Classes. We measure the KLD, SIM, and NSS metrics for each affordance category, with darker colors representing
higher performance. The left and right represent the results at the Seen and Unseen settings, respectively.

Table 2. The influence of m. We investigate the impact of the
hyper-parameter m (i.e.the number of layers in the IFE block) in
the IFE module on model performance.

m=? KLD ↓ SIM ↑ NSS ↑

S
e
e
n

1 1.275 0.731 3.517
2 0.965 0.756 3.723
3 1.024 0.743 3.702
4 1.126 0.734 3.654
5 1.217 0.729 3.594

U
n
s
e
e
n

1 4.403 0.411 2.127
2 2.823 0.430 2.303
3 3.101 0.416 2.176
4 3.471 0.399 2.066
5 5.181 0.384 1.935

pose estimation models. In the testing process, we only in-
put non-interactive images to predict the corresponding af-
fordance regions. All models are trained with the default
parameters, and the input images are 224 × 224, using the
same data augmentation. The final output is fed through a
Sigmoid activation function, and the loss is calculated using
a binary cross-entropy loss. For the few-shot segmentation
model, we take the interactive image along with a body part
contact region as a group of inputs for the support branch
(i.e.each pair of interactive and non-interactive image pairs
corresponds to Ncls groups of inputs) and predict the corre-
sponding interactive regions in the non-interactive images.

Table 3. The influence of l. We investigate the impact of the
hyper-parameter l (i.e.the number of cross-branch tokens) in the
IFE module on model performance.

l=? KLD ↓ SIM ↑ NSS ↑

S
e
e
n

2 1.938 0.676 3.434
4 1.252 0.731 3.585
8 1.150 0.742 3.653
16 0.965 0.756 3.723
32 1.164 0.735 3.671

U
n
s
e
e
n

2 5.060 0.396 2.079
4 4.216 0.409 2.134
8 3.045 0.409 2.181
16 2.823 0.430 2.303
32 3.972 0.418 2.208

Furthermore, Table 1 shows the dimensions, definition do-
mains, and meanings of the corresponding symbols in the
method proposed in this paper.

C. Experiments
C.1. Different Classes

We explore the performance of different methods on dif-
ferent affordance classes. Fig. 3 shows their results on
each category in the KLD, SIM, and NSS metrics, in which
darker colors indicate that the model performs better on in-
dividual categories. In the Seen setting, our method out-
performs all other methods in most metrics, while in the



Figure 4. Different Views.

Unseen setting, the results are either best or second best in
most metrics.

C.2. Different Hyper-parameters

Table 2 and Table 3 show the impact of the hyper-
parameters m and l in the IFE module on the model’s per-
formance, where l = 16 and m = 2 are the default set-
tings in the paper. The influence at the Unseen setting is
slightly more apparent, where the number of cross-branch
tokens greatly affects the model performance.

C.3. Different Views

Our dataset contains interactive and non-interactive im-
ages from different views, enabling the trained model to
adapt to viewpoint changes. Besides, the IFE module can
establish contextual links between different body contact
regions, which helps the model counteract the effects of
viewpoint changes. The non-interactive images from dif-
ferent viewpoints are shown in the figure, indicating the ro-
bustness under viewpoint changes. Further, we will collect
a test set containing different views of the same object to
evaluate the model’s robustness to viewpoint changes.

C.4. More Visualization Results

Fig. 5 and Fig. 6 show the prediction results of all meth-
ods in the Seen and Unseen settings, respectively.

E. Potential Applications
• Human-Object Interaction. Our method is able to

predict the interactive affinity of each body part and
object local regions from the human-object interaction
images, which can facilitate the network to establish
the connection between different body parts [6, 9] and

infer the corresponding interactions, as well as reduc-
ing the interference of redundant negative pairs to im-
prove the accuracy of prediction. [14, 26].

• AR/VR Furthermore, our method can be used in
AR/VR [5, 23], i.e., for humans in different physical
scenes, our method is able to extract the body parts
corresponding contact regions during their interactions
with the environment and jointly map them to a com-
mon scene rendered by the VR device, facilitating the
device to generate scenes with human interactions in
the virtual world [10, 11, 22].
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