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Abstract

This supplementary material contains the proofs of theoretical results, implementation details for numerical experiments
and illustrations of experiment datasets.

S.1. Proof of Theorem 1

Theorem 1 (Proxy) Assume supp(qY ) ⊆ supp(pY ), the following identities hold.
(a) Kantorovich OT:

OTmask(Pw
∗
, Q, C̃) = OTqYcond(Pw

∗
, Q,C).

(b) Sinkhorn OT:
Sλmask(Pw

∗
, Q, C̃) + λH(QY ) = Sλ,qYcond (Pw

∗
, Q,C).

(c) UOT: there exists non-negative α(·) on Y such that supp(α) = supp(qY ),
∑
y∈Y α(y) = 1 and

Sλ,βmask(Pw
∗
, Q, C̃) + C0(α,QY ) = Sλ,β,αcond (Pw

∗
, Q,C),

where C0 is a constant depending only on α and QY .

Proof For convenience, we first introduce some notations for proof. For finite sample setting, denote |Y| = k as class
number, nl/ml as the sample size of l-th source/target class. Since supp(qY ) ⊆ supp(pY ), we denote supp(pY ) = Y =

{1, 2, . . . , k}, supp(pY ) = {1, 2, . . . , k0} and n0 =
∑k0
l=1 nl, where k0 ≤ k is the number of shared classes and n0 the

sample size of shared classes on source domain. Without loss of generality, we denote the data matrix with cluster data as
Xs = [Xs

1,X
s
2, . . . ,X

s
k] ∈ Rd×n and Xt = [Xt

1,X
t
2, . . . ,X

t
k0

] ∈ Rd×m, where d is data dimension, Xs
l ∈ Rd×nl and

Xt
l ∈ Rd×ml are the data matrix of l-th source class and l-th target class, respectively. Generally, for a matrix A, let the

uppercase letters Aij denote the blocks of A and lowercase letters aij the entries of A. Note that for the reweighted source
we have

pw
∗

X =
∑
y∈Y

pw
∗

y pX|y =
∑
y∈Y

qypX|y =

k0∑
l=1

qY=lpX|l, (S.1)

which implies the proportions of outlier classes are 0 in reweighted distribution. Then a submatrix C̃sub ∈ Rn0×m of C̃,
which considers the cost between samples of shared classes, is defined as the first n0 rows of C̃. Now we begin to prove the
main results.

(1) Kantorvich OT.
∗Corresponding Author.



Recall the masked Kantorvich OT is formulated as

OTmask(Pw
∗
, Q, C̃) = min

Γ∈Π(Pw
∗

X ,QX)

〈
Γ, C̃

〉
F
.

Let the source distribution of shared classes be rw
∗

X ∈ Rn0 , which consists of the first n0 elements of pw
∗
. Since the values

of outlier classes’ samples are 0 in pw
∗

X ∈ Rn as Eq. (S.1), there transport plan for outlier classes will be 0, i.e., γij = 0 if
i > n0. Then the original problem boils down to the transportation between shared classes:

OTmask(Pw
∗
, Q, C̃) = min

Γ∈Π(Pw
∗

X ,QX)

〈
Γ, C̃

〉
F

= min
Γsub∈Π(Rw

∗
X ,QX)

〈
Γsub, C̃sub

〉
F
.

On the other hands, note that the transport plan between inter-class sample pair will be 0 since, i.e., γsub
ij = 0 if ysi 6= ytj ,

since otherwise the overall transport cost will be infinity and the problem will not be well-defined. It implies the plan Γsub

under masked cost admits a block diagonal structure, then we have

OTmask(Pw
∗
, Q, C̃) = min

Γsub∈Π(Rw
∗

X ,QX)

〈
Γsub, C̃sub

〉
F

= min
Γsub∈Π(Rw

∗
X ,QX)

〈 Γsub
11 · · · 0
...

. . .
...

0 · · · Γsub
k0k0

 ,
 C̃sub

11 · · · ∞
...

. . .
...

∞ · · · C̃sub
k0k0

〉
F

= min
Γsub∈Π(Rw

∗
X ,QX)

k0∑
l=1

〈
Γsub
ll , C̃sub

ll

〉
F

=

k0∑
l=1

min
Γsub
ll ∈Π(qY=lRw

∗
X|l,qY=lQX|l)

〈
Γsub
ll , C̃sub

ll

〉
F

=

k0∑
l=1

min
Γsub
ll

qY=l
∈Π(Rw

∗
X|l,QX|l)

qY=l

〈
Γsub
ll

qY=l
, C̃sub

ll

〉
F(

Γ̄sub
ll ,

Γsub
ll

qY=l

)
=

k0∑
l=1

qY=l min
Γ̄sub
ll ∈Π(Rw

∗
X|l,QX|l)

〈
Γ̄sub
ll , C̃sub

ll

〉
F

=

k0∑
l=1

qY=lOT(Rw
∗

X|l, QX|l, C̃
sub
ll )

=

k0∑
l=1

qY=lOT(Pw
∗

X|l, QX|l,C
sub
ll ) (S.2)

= OTqYcond(Pw
∗
, Q,C),

where Γ̄sub
ll and C̃sub

ll are nl×ml blocks of l-th class, Eq. (S.2) holds sinceRw
∗

X|l = Pw
∗

X|l for shared classes and C̃sub
ll = Csub

ll

for intra-class sample pairs.

(2) Sinkhorn OT.
Recall the masked Sinkhorn OT is formulated as

Sλmask(Pw
∗
, Q, C̃) = min

Γ∈Π(Pw
∗

X ,QX)

〈
Γ, C̃

〉
F

+ λ 〈Γ, ln Γ〉F .



Similarly, we have

Sλmask(Pw
∗
, Q, C̃)

= min
Γ∈Π(Pw

∗
X ,QX)

〈
Γ, C̃

〉
F

+ λ 〈Γ, ln Γ〉F

= min
Γsub∈Π(Rw

∗
X ,QX)

〈
Γsub, C̃sub

〉
F

+ λ
〈
Γsub, ln Γsub

〉
F

= min
Γsub∈Π(Rw

∗
X ,QX)

〈 Γsub
11 · · · 0
...

. . .
...

0 · · · Γsub
k0k0

 ,
 C̃sub

11 · · · ∞
...

. . .
...

∞ · · · C̃sub
k0k0

+ λ ln

 Γsub
11 · · · 0
...

. . .
...

0 · · · Γsub
k0k0

〉
F

= min
Γsub∈Π(Rw

∗
X ,QX)

k0∑
l=1

〈
Γsub
ll , C̃sub

ll

〉
F

+ λ
〈
Γsub
ll , ln Γsub

ll

〉
F

=

k0∑
l=1

min
Γsub
ll ∈Π(qY=lRw

∗
X|l,qY=lQX|l)

〈
Γsub
ll , C̃sub

ll

〉
F

+ λ
〈
Γsub
ll , ln Γsub

ll

〉
F

=

k0∑
l=1

min
Γsub
ll

qY=l
∈Π(Rw

∗
X|l,QX|l)

qY=l

[〈
Γsub
ll

qY=l
, C̃sub

ll

〉
F

+ λ

〈
Γsub
ll

qY=l
, ln Γsub

ll

〉
F

]

=

k0∑
l=1

min
Γsub
ll

qY=l
∈Π(Rw

∗
X|l,QX|l)

qY=l

[〈
Γsub
ll

qY=l
, C̃sub

ll

〉
F

+ λ

〈
Γsub
ll

qY=l
, ln

Γsub
ll

qY=l

〉
F

+ λ

〈
Γsub
ll

qY=l
, (ln qY=l)1nl×ml

〉
F

]

=

k0∑
l=1

qY=l

[
min

Γ̄sub
ll ∈Π(Rw

∗
X|l,QX|l)

〈
Γ̄sub
ll , C̃sub

ll

〉
F

+ λ
〈
Γ̄sub
ll , ln Γ̄sub

ll

〉
F

+ λ ln qY=l

〈
Γ̄sub
ll ,1nl×ml

〉
F

]

=

k0∑
l=1

qY=l

[
min

Γ̄sub
ll ∈Π(Rw

∗
X|l,QX|l)

〈
Γ̄sub
ll , C̃sub

ll

〉
F

+ λ
〈
Γ̄sub
ll , ln Γ̄sub

ll

〉
F

+ λ ln qY=l

]

=

k0∑
l=1

qY=lS
λ(Rw

∗

X|l, QX|l, C̃
sub
ll ) + λ

k0∑
l=1

qY=l ln qY=l

=

k0∑
l=1

qY=lS
λ(Pw

∗

X|l, QX|l, C̃
sub
ll )− λH(QY )

= Sλ,qYcond(Pw
∗
, Q,C)− λH(QY ).

Therefore, we have Sλ,qYcond(Pw
∗
, Q,C) = Sλmask(Pw

∗
, Q, C̃) + λH(QY )

(3) Unbalanced OT.
Recall the masked unbalanced OT is formulated as

Sλ,βmask(Pw
∗
, Q, C̃) = min

Γ∈M+(Rn×m)
〈Γ, C̃〉F + λ 〈Γ, ln Γ〉F + β

[
Dφ(ΓPw∗X

‖Pw
∗

X ) +Dφ(ΓQX‖QX)
]
,

where Dφ is KL divergence. The major difference between unbalanced OT and other OTs with marginal constraints is that
the Γ is only required to be a distribution over Rn×m, i.e., Γ ∈ M+(Rn×m) will satisfy that γij >= 0 and

∑
ij γij = 1.

Since Γ is no longer a coupling of (Pw
∗
, Q, C̃), it is necessary to consider whether the 0 transport plans for outlier classes

still hold.
Note the KL penalty Dφ(ΓPw∗X

‖Pw∗X ) implies that ΓPw∗X
should be absolutely continuous with respect to Pw

∗

X , since
otherwise the penalty value will be infinity and the problem is not well-defined. Therefore, for the i-th source sample, if it
belongs to outlier classes, the corresponding values in Pw

∗

X are 0 (i.e., [Pw
∗

X ]i = 0), and the transport plan will also be 0
(i.e., [ΓPw∗X

]i =
∑
j γij = 0 =⇒ γij = 0). Therefore, the original problem can also be written as the transportation

between shared classes, i.e.,



Sλ,βmask(Pw
∗
, Q, C̃) = min

Γsub∈M+(Rn0×m)
〈Γsub, C̃sub〉F + λ

〈
Γsub, ln Γsub

〉
F

+ β
[
Dφ(Γsub

Rw
∗

X
‖Rw

∗

X ) +Dφ(Γsub
QX‖QX)

]
.

Let Γsub∗ be the optimal solution for the objective above. Similarly, Γsub∗ is also block-diagonal since the non-zero plan
values for inter-class sample pairs (xsi ,x

t
j) will induce infinite transport cost with c̃sub

ij . Then we consider the following
coefficient

α(l) =
∑
ij

[Γsub∗

ll ]ij ,

which represents the values assigned to the transportation between l-th source class and l-th target class. It is clear that α(·)
is non-negative on Y and satisfies that supp(α) = supp(qY ). For simplicity, we denote the blocks of Γsub

Rw
∗

X

and Γsub
QX

as

Γsub
Rw
∗

X
=

 os1
...

osk0

 ∈ Rn0 , Γsub
QX =

 ot1
...

otk0

 ∈ Rm

where osl ∈ Rnl and otl ∈ Rml . Then we have

Sλ,βmask(Pw
∗
, Q, C̃)

= min
Γsub∈M+(Rn0×m)

〈
Γsub, C̃sub

〉
F

+ λ
〈
Γsub, ln Γsub

〉
F

+ β
[
Dφ(Γsub

Rw
∗

X
‖Rw

∗

X ) +Dφ(Γsub
QX‖QX)

]
= min

Γsub∈M+(Rn0×m)

〈
Γsub, C̃sub

〉
F

+ λ
〈
Γsub, ln Γsub

〉
F

+ β

[〈
Γsub
Rw
∗

X
, ln

Γsub
Rw
∗

X

Rw
∗

X

〉
F

+

〈
Γsub
QX , ln

Γsub
QX

QX

〉
F

]

=

k0∑
l=1

min
Γsub
ll ∈α(l)M+(Rnl×ml )

〈
Γsub
ll , C̃sub

ll

〉
F

+ λ
〈
Γsub
ll , ln Γsub

ll

〉
F

+ β

[〈
osl , ln

osl
rw
∗

Y=lR
w∗

X|l

〉
F

+

〈
otl , ln

otl
qY=lQX|l

〉
F

]
(S.3)

=

k0∑
l=1

min
Γsub
ll
α(l)
∈M+(Rnl×ml )

α(l)

[〈
Γsub
ll

α(l)
, C̃sub

ll

〉
F

+ λ

〈
Γsub
ll

α(l)
, ln Γsub

ll

〉
F

+ β

〈
osl
α(l)

, ln
osl

qY=lRw
∗

X|l

〉
F

+ β

〈
otl
α(l)

, ln
otl

qY=lQX|l

〉
F

]

=

k0∑
l=1

min
Γ̄sub
ll ∈M+(Rnl×ml )

α(l)

[〈
Γ̄sub
ll , C̃sub

ll

〉
F

+ λ
〈
Γ̄sub
ll , ln Γ̄sub

ll

〉
F

+ λ lnα(l)

+ β

〈
osl
α(l)

, ln
osl

qY=lRw
∗

X|l

〉
F

+ β

〈
otl
α(l)

, ln
otl

qY=lQX|l

〉
F

]
, (S.4)

where Eq. (S.3) holds since Γsub∗ is block diagonal, which implies the minimization problem can be divided into k0 sub-
problems and the mass assigned to l-th class is α(l). Note that for the KL terms, we have〈

osl
α(l)

, ln
osl

qY=lRw
∗

X|l

〉
F

+

〈
otl
α(l)

, ln
otl

qY=lQX|l

〉
F

=

〈
osl
α(l)

, ln
osl

α(l)Rw
∗

X|l

〉
F

+

〈
osl
α(l)

, ln
α(l)1nl
qY=l

〉
F

+

〈
otl
α(l)

, ln
otl

α(l)QX|l

〉
F

+

〈
otl
α(l)

, ln
α(l)1ml
qY=l

〉
F

. (S.5)

Denote ōsl =
osl
α(l) ∈ and ōtl =

otl
α(l) , then

∑
i[ō

s
l ]i =

∑
i[ō

t
l ]i = 1 since the mass assigned to l-th class is α(l). Then Eq. (S.5)



can be further written as〈
osl
α(l)

, ln
osl

qY=lRw
∗

X|l

〉
F

+

〈
otl
α(l)

, ln
otl

qY=lQX|l

〉
F

=

〈
ōsl , ln

ōsl
Rw

∗

X|l

〉
F

+ ln
α(l)

qY=l
〈ōsl ,1nl〉F +

〈
ōtl , ln

ōtl
QX|l

〉
F

+ ln
α(l)

qY=l

〈
ōtl ,1ml

〉
F

=

〈
ōsl , ln

ōsl
Rw

∗

X|l

〉
F

+ ln
α(l)

qY=l
+

〈
ōtl , ln

ōtl
QX|l

〉
F

+ ln
α(l)

qY=l
(S.6)

Finally, by substituting KL terms in Eq. (S.6) into main proof Eq. (S.4), we have

Sλ,βmask(Pw
∗
, Q, C̃)

=

k0∑
l=1

min
Γ̄sub
ll ∈M+(Rnl×ml )

α(l)

[〈
Γ̄sub
ll , C̃sub

ll

〉
F

+ λ
〈
Γ̄sub
ll , ln Γ̄sub

ll

〉
F

+ λ lnα(l)

+ β

〈
osl
α(l)

, ln
osl

qY=lRw
∗

X|l

〉
F

+ β

〈
otl
α(l)

, ln
otl

qY=lQX|l

〉
F

]

=

k0∑
l=1

min
Γ̄sub
ll ∈M+(Rnl×ml )

α(l)

[〈
Γ̄sub
ll , C̃sub

ll

〉
F

+ λ
〈
Γ̄sub
ll , ln Γ̄sub

ll

〉
F

+ λ lnα(l)

+ β

〈
ōsl , ln

ōsl
Rw

∗

X|l

〉
F

+ β ln
α(l)

qY=l
+ β

〈
ōtl , ln

ōtl
QX|l

〉
F

+ β ln
α(l)

qY=l

]

=

k0∑
l=1

α(l)

[
min

Γ̄sub
ll ∈M+(Rnl×ml )

〈
Γ̄sub
ll , C̃sub

ll

〉
F

+ λ
〈
Γ̄sub
ll , ln Γ̄sub

ll

〉
F

+ β

〈
ōsl , ln

ōsl
Rw

∗

X|l

〉
F

+ β

〈
ōtl , ln

ōtl
QX|l

〉
F

]

+

k0∑
l=1

[
λα(l) lnα(l) + 2β lnα(l)

α(l)

qY=l

]

=

k0∑
l=1

α(l)Sλ,β(Pw
∗

X|l, QX|l, C̃
sub
ll )− λH(QY ) + 2βDφ(α‖QY )

= Sλ,β,αcond (Pw
∗
, Q,C)− λH(QY ) + 2βDφ(α‖QY ).

Therefore, the non-negative α(·) such that Sλ,β,αcond (Pw
∗
, Q,C) = Sλ,βmask(Pw

∗
, Q, C̃) +C0(α,QY ), where C0(α,QY ) =

λH(QY )− 2βDφ(α‖QY )

S.2. Experiment Details and Additional Discussions
S.2.1. Implementation Details

The network-based model is implemented in PyTorch [11] platform. For network architectures, fr consists of ResNet-
50 [6] and two Fully-Connected (FC) layers (R2048 → R1024 → R512) with batch normalization, where the FC layers are
activated by Leaky ReLU (α = 0.2) and Tanh, respectively; fc is a single FC layer (R512 → R|Y|) with SoftMax activation.
For optimization, we use batch gradient descent with Adam optimizer (β1 = 0.9, β2 = 0.999), where the learning rate is set
as 1e-3. Entropic parameter λ is empirically set as 1e-2 in numerical experiments. To ensure the more accurate OT estimation
with larger batch-size, we load the pretrained parameter on ImageNet for the ResNet-50 in representation learner fr, and then
froze them during the training. Therefore, the overall model is trained with batch gradient descent on Office-Home, Office-
31, ImageCLEF and mini-batch gradient descent (batch size is 5k) on VisDA-2017. The importance weight w is estimated
by BBSE algorithm [7] and updated on the fly. In training stage, we first warm up the model on source domain with risk
EP [`(f(xs), ys)] for 20 epochs, and then train the model with full objective. Such a warm up will reduce the uncertainty
induced by pseudo labels effectively. The overall training pipeline for full objective is summarized in Alg. S.1. Note that



Algorithm S.1 MOT-based Model for PDA

Input: labeled source data {(xsi , ysi )}ni=1 and unlabeled target data {(xti)}mi=1, training epochs Emax, conditional alignment
parameter η;

Output: representation learner fr, task learner fc;
1: Initialize fr and fc as neural networks;
2: for i = 1, 2, . . . , Emax do
3: Forward propagate {xsi}

ns
i=1 and {xti}

nt
i=1 and obtain {(zsi , ŷsi )}

ns
i=1 and {(zti, , ŷti)}

nt
i=1;

# Weight Estimation
4: Estimate importance weight w on-the-fly with BBSE algorithm [7];

# Transport Assignment Learning
5: Compute reweighted source pwX as Def. 1 and maksed kernel K̃ as Eq. (10) with pseudo target labels {ŷti}

nt
i=1;

6: Compute transport plan Γ̃ = arg minΓ Lcond for MOT according to Alg. 1;
# Conditional Alignment and Risk Minimization

7: Compute alignment loss Lcond(fr, Γ̃) and risk loss Lrisk(fr, fc) with transport plan Γ̃ and barycenter mapping ψ;
8: Update learners with overall loss L(fr, fc) = Lrisk(fr, fc) + ηLcond(fr, Γ̃):

fr ← fr − λ∇frL(fr, fc), fc ← fc − λ∇fcL(fr, fc)
9: end for

studying deep model-based implementation with mini-batch OT [3, 9] is also a meaningful direction. Compared with the
shallow networks with larger batch-size, mini-batch OT algorithm ensures larger capacity of deep model.

S.2.2. Dataset Details

• Office-Home [14] contains 15k images from 4 domains with 65 classes, i.e., Art (A), Clipart (C), Product (P) and
Real-World (R). In PDA setting, target domain consists of the first 25 classes (alphabetical order).
• VisDA-2017 [12] contains 152k synthetic images from domain S and 55k real images from domain R. There are 12

classes, and we form target domain with the first 6 classes.
•Office-31 [13] contains 4k images and 31 classes from Amazon (A), Webcam (W), Dslr (D). We follow standard protocol

[1] to form target domain with 10 classes.
• ImageCLEF [2] contains 3 domains with 12 classes, i.e., Caltech (C), ImageNet (I), Pascal (P). We form target domain

with the first 6 classes as protocol [8].

S.2.3. About Parameters

There are two major parameters for MOT model, i.e., entropic regularization parameter λ and relaxation parameter β for
UOT. For sensitivity of parameters, the model performance is generally robust under different entropic parameter λ, while
the larger λ (i.e., closer to original OT) may reduce the convergence speed of Sinkhorn iteration. For relaxation parameter β,
its impact is related with the degree of label shift. When label shift is severer, β (i.e., penalty on marginals) should be smaller
to reduce negative transfer. In this case, the impact of β will be significant, and vice versa.

S.2.4. About Barycenter Map

Note that the barycenter maps learned with original plan and entropy regularized plan are generally different. Empirically,
we observed that intuitive strategy for increasing the sparsity of Sinkhorn plan is effective. For example, truncating the small
values in plan Γ with threshold or contribution ratio can improve the proportion of accurate connection pairs in Γ. Therefore,
learning de-biased map and reducing the density of Γ, e.g., low entropy regularization in Eq. (12), could be meaningful
problems.

S.2.5. About Partial OT

For relaxation strategy, there is another methodology called partial OT (POT) [4, 5, 10]. For masked version of POT,
the empirical modeling can be directly achieved by replacing the UOT-based relaxation model Eq. (8) with partial OT. But,
the theoretical understanding of mask mechanism with partial OT needs an in-depth analysis, which could be a meaningful
problem. We will provide preliminary discussions on masked partial OT.
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