
RaBit: Parametric Modeling of 3D Biped Cartoon Characters
with a Topological-consistent Dataset

Supplemental Material

Zhongjin Luo1* Shengcai Cai1,3* Jinguo Dong1 Ruibo Ming1,4

Liangdong Qiu2,1 Xiaohang Zhan3 Xiaoguang Han1,2†

1SSE, CUHKSZ 2FNii, CUHKSZ 3 Huawei Technologies Co., Ltd. 4Tsinghua University

1. Details of 3DBiCar

Image Styles. Fig. 1 shows representative images for the
4 styles with different appearances. We define them based
on their different sources: picture book - cropped from e-
books of children, computer designed - made by artists using
software, hand drawn - drawn by kids, toy - captured from
real toys.

(a) (b) (c) (d)

Figure 1. A representative example from different image styles. (a)
picture book, (b) computer designed, (c) hand drawn, (d) toy.

Shape Modeling Procedure. We recruit six professional
artists to create 3D corresponding character models using
Blender according to the collected reference images. The key
to building a linear parametric shape model lies in maintain-
ing a unified mesh topology. To achieve this, all six artists
are required to craft 3D models by deforming the template
mesh under the constraints of the predefined landmarks. Each
artist owns over six years of modeling experience and each
character takes around 1 hour on average. The modeling
result is required to be matched with the reference images as
much as possible. To maintain visual quality and topological
consistency, we have established a review committee of ten
members to assess the models based on reference images
and predefined landmarks.

*Equal contribution
†Corresponding Author

2. Details of RaBit
Shape Space. As illustrated in Fig. 2, RaBit is able to express
the basic geometry of diverse shapes in 3DBiCar with low-
dimensional vectors (100 in our experiments). Such ability of
RaBit can well facilitate the construction of learning-based
regression methods for inferring reasonable shapes from im-
ages or sketches, as demonstrated in our downstream tasks.
Biped cartoon is known as a popular character style in gam-
ing and filming. RaBit spans a wider range of species than
existing human model [5, 6]. However, due the use of the
holistic PCA model, RaBit may struggle to represent local
geometric details and may result in undesirable entangle-
ment, as shown in Fig. 3. Conducting parametric modeling
for diverse shapes is a fundamental problem, but it has re-
ceived little methodological evolution in the past due to the
lack of data. We hope that our proposed dataset can inspire
further research in this area.

GT PCA Error-map GT PCA Error-map GT PCA Error-map

0.020 0.0330.006

Figure 2. Comparison of shapes reconstructed by RaBit with GT.

The first axis The second axis

Figure 3. An illustration of the first two axes of shape space in
RaBit.

Visualization of Topological Consistency. Good correspon-
dence of training data is essential for constructing a linear

1

shape model and preserving the topological consistency of
reconstructed models. Getting topological consistency in
manual modeling is intrinsically challenging. To do so, we
put much effort to construct 3DBiCar, including template
designing, landmark guidance, review committee for careful
checking. In Fig. 4, we use checkboard texture mapping for
visualizing the correspondence of representative examples
sampled from RaBit’s shape space.

Figure 1
Figure 4. An illustration of the mesh correspondence.

Eyeball Reconstruction. In our implementation, we approx-
imate an eyeball as a sphere. Generally, a sphere is deter-
mined by its center and radius. As shown in the Fig. 5, in
RaBit, an eyeball’s center oe and radius re is computed as
follows,

re = c1rs, (1)

de = c2rs, (2)

oe = os − den, (3)

where rs and os is the radius and the center of the 3D cir-
cle, computed by the least square fitting with the landmark
points of the eye socket. de denotes the Euclidean Distance
between os and oe and n the normal of the 3D circle. c1 is
the mean value of de/rs of all models in 3DBiCar, while c2
is the mean value of re/rs. Both c1 and c2 are precomputed
constant values.

osoe

re
rs

de n

Figure 5. An illustration of eyes computation. oe is the center of
the eye and re is the radius of the eye. os and rs are the center and
the radius of the orbit, respectively.

Implementations. The shape model of RaBit is learned from
1,050 models of 3DBiCar using PCA [5, 7]. For pose mod-
eling, RaBit utilizes the consistent skeleton and skinning

weight matrix defined in 3DBiCar. Note that both 3DBiCar
and RaBit currently does not support the animation of tails,
which will be explored in our future work. As for texture
modeling, 1,050 raw textures from 3DBiCar were adopted
and extended to 21,000 training data with image-level aug-
mentations (e.g., flipping, and adjusting HSV). Rabit’s tex-
ture generator follows the architecture of StyleGAN2 [4]
and is trained with the following setting: the dimensionality
of Z with 512, the output resolution with 1024× 1024× 3,
the learning rate with 3× 10−4, the batch size with 32, the
Adam optimizer with β1 = 0, β2 = 0.99, ϵ = 10−8. The
training is performed on a server with 4 Nvidia RTX 3090Ti
GPUs.

3. Details of BiCarNet

Data Preparation. We split 3DBiCar into a training set
(1,050 image-model pairs) and a testing set (450 pairs).
To support a stable training of BiCarNet, we augment a
large number of synthetic paired data with the help of RaBit.
Specifically, we generate a series of shape vectors by inter-
polating between the 1,050 models’ shape parameters. Fig. 6
shows the representative results of interpolated shapes. For
pose augmentation, a variety of poses from other datasets
(e.g., Human3.6M [3]) are retargeted to RaBit’s pose space,
as shown in Fig. 7. Furthermore, 1,050 raw textures are also
utilized to generate synthetic texture maps by interpolating
with RaBit, as shown in Fig. 8. The above augmentations
finally produce 13,650 models with texture and pose. These
models are then rendered into images from different camera
views for training.

Implementations. In our implementation, for the shape and
pose regression modules, we utilize two ResNet-50 blocks to
embed the input image (512×512×3) to a 100-dimensional
shape vector and a 69-dimensional pose vector, respectively.
For the texture module, we adopt pSp-encoder [8] to learn
a 512-dimensional texture vector from the image. As for
the part-sensitive texture reasoner, we use pSp [8] as the
basic building block and learn multiple local UV textures
(256×256×3) from the input. pix2pixHD [9] is employed as
the fusion module (Fuser), which takes the 1024× 1024×
3 coarsely-blended texture map as input and outputs fine
texture maps with the same resolution.

Part-Sensitive UVs. As shown in Fig. 9, we design five
individual UV-mappings for significant parts, i.e., nose, ears,
horns, eyes, and mouth. These part UVs enlarge five constant
regions of the global UV mapping. Five lightweight encoder-
decoder branches are adopted to learn the appearances of
these local regions from the input image, respectively. The
learned part UVs could then be remapped to their corre-
sponding areas on the global UV map, resulting in a blended
texture.

Figure 6. An illustration of interpolated shapes. Models from the
top row and left column are from 3DBiCar. Other models with
blue backgrounds are obtained by interpolating the leftmost and
uppermost models with the help of RaBit.

Figure 7. An illustration of diverse poses transferred from pose
datasets.

4. Details of Sketch-based Modeling

Data preparation. We first sample 12,000 shape vectors
randomly and feed them to RaBit to generate 3D cartoon
characters with diversified shapes. Then the suggestive con-
tour [1, 2] is applied to render the front-view sketches with
different abstraction levels and obtain 108,000 sketch-model
pairs. Fig. 10 shows examples of rendered sketches.
Implementations. As shown in Fig. 11, we first adopt one
ResNet-50 module and three MLPs as the encoder-decoder

Figure 8. An illustration of synthesized texture maps. For each row,
the leftmost and the rightmost textures are from 3DBiCar, while
the other three textures are interpolated results generated by RaBit
under different weights.

Global Nose Ear Horn Mouth Eye

Figure 9. An illustration of our UV layouts and textures.

......

Figure 10. An illustration of rendered sketches used for training.

architecture, mapping the input sketch 512 × 512 to 100-
dimensional shape parameters. Then the generated shape
parameters are fed to RaBit to reconstruct the corresponding
3D model. We train the network with a batch size of 100 and
a learning rate of 3× 10−4 with the Adam optimizer. More-
over, we use the L1 loss to measure the difference between
the predicted shape parameters and the ground truth. Our
sketch-based modeling interface is implemented with the QT
framework. CGAL is adopted for 3D geometry processing.

As shown in the video, running on a personal computer with
an Intel i7-7700 CPU, 16GB RAM, and a single Nvidia GTX
2080Ti GPU, our modeling application supports real-time
feedback.

Input Encoder Output
RaBit ...

MLPs

Figure 11. The pipeline of our sketch-based modeling. Given a
sketch 512× 512 as input, we employ one ResNet-50 module and
three MLPs to embed the input to 100-dimensional shape parame-
ters. The output shape parameters are fed to RaBit to reconstruct
the corresponding 3D model.

References
[1] Doug DeCarlo, Adam Finkelstein, Szymon Rusinkiewicz, and

Anthony Santella. Suggestive contours for conveying shape.
In ACM SIGGRAPH 2003 Papers, pages 848–855. 2003. 3

[2] Xiaoguang Han, Chang Gao, and Yizhou Yu. Deepsketch2face:
a deep learning based sketching system for 3d face and carica-
ture modeling. ACM Transactions on graphics (TOG), 36(4):1–
12, 2017. 3

[3] Catalin Ionescu, Dragos Papava, Vlad Olaru, and Cristian Smin-
chisescu. Human3.6m: Large scale datasets and predictive
methods for 3d human sensing in natural environments. IEEE
Transactions on Pattern Analysis and Machine Intelligence,
36(7):1325–1339, 2014. 2

[4] Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten,
Jaakko Lehtinen, and Timo Aila. Analyzing and improving the
image quality of stylegan. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pages
8110–8119, 2020. 2

[5] Matthew Loper, Naureen Mahmood, Javier Romero, Gerard
Pons-Moll, and Michael J. Black. SMPL: A skinned multi-
person linear model. ACM Trans. Graphics (Proc. SIGGRAPH
Asia), 34(6):248:1–248:16, Oct. 2015. 1, 2

[6] Georgios Pavlakos, Vasileios Choutas, Nima Ghorbani, Timo
Bolkart, Ahmed A. A. Osman, Dimitrios Tzionas, and
Michael J. Black. Expressive body capture: 3D hands, face,
and body from a single image. In Proceedings IEEE Conf. on
Computer Vision and Pattern Recognition, pages 10975–10985,
2019. 1

[7] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vin-
cent Michel, Bertrand Thirion, Olivier Grisel, Mathieu Blondel,
Peter Prettenhofer, Ron Weiss, Vincent Dubourg, et al. Scikit-
learn: Machine learning in python. the Journal of machine
Learning research, 12:2825–2830, 2011. 2

[8] Elad Richardson, Yuval Alaluf, Or Patashnik, Yotam Nitzan,
Yaniv Azar, Stav Shapiro, and Daniel Cohen-Or. Encoding in
style: a stylegan encoder for image-to-image translation. In
Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pages 2287–2296, 2021. 2

[9] Ting-Chun Wang, Ming-Yu Liu, Jun-Yan Zhu, Andrew Tao,
Jan Kautz, and Bryan Catanzaro. High-resolution image syn-
thesis and semantic manipulation with conditional gans. In
Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2018. 2

