
A. Validation for CLIP-guided Editing

Our methodology relies on CLIP-guided fine-grained
image editing to provide adequate model diagnostics. It is
critical to validate CLIP’s capability of connecting language
and visual representations. This section proposes two meth-
ods for CLIP’s validation.

A.1. Visualization for edited images

In this section, we visualize the attribute edit method we
employed from StyleCLIP [2].

Effect of λ. Fig. 7 shows the effect of λ in Equation 2
of the main text. Originally in StyleCLIP, this filter parame-
ter (denoted as β in [2]) helps the style disentanglement for
editing. Since we normalized the edit vectors which ben-
efits the disentanglement in our framework, λ’s effect on
style disentanglement is lessened and it is mainly effective
on intensity control and denoising.

Single-attribute editing. We show an extensive set of
images of attribute editing based on the extracted global
edit directions (mentioned in Section 3.2 of the main text)
to demonstrate that the method is exactly editing the cor-
responding attribute. Fig. 9 and Fig. 10 visualize the re-
sults. We can observe that, based on the user’s input at-
tribute string, the edited image changes only in the attribute
direction, while preserving the other attributes.

Multiple-attribute editing. To verify that our approach
of editing multiple attributes by linear combination (Equa-
tion 3 of the main text) is valid, we show examples of com-
bined edits in Fig 8.

A.2. User study for edited images

To validate that our counterfactual synthesis is effective
and fine-grained, we conducted a user study validating two
aspects: synthesis fidelity and attribute consistency.

User study for synthesis fidelity. We let the user clas-
sify which image is the counterfactual synthesis to verify
that no unreal artifacts are introduced during the ZOOM
process. Fig. 5a shows sample questions of this study. In
theory, the worse case is that users can perfectly recognize
the semantic modification and yield a 100% user recogni-
tion rate. Inversely, the best case should be that the users
cannot recognize any counterfactual synthesis and do ran-
dom guess to yield a 50% user recognition rate.

User study for attribute consistency. We ask users
whether they agree that the counterfactual and original im-
ages are consistent on the ground truth w.r.t. the target clas-
sifier. For example, during the counterfactual synthesis for
the cat/dog classifier, a counterfactual cat image should stay
consistent as a cat. Fig. 5b shows another sample questions.
The worst case is that the counterfactual changes the ground
truth label to affect the target model, which makes the user
agreement rate very low (even to zero).

The statistics of the user study are shown in Table 1,
where we separate 34 volunteers (at least of undergradu-
ate education level) by two collector links and receive re-
sponses from them. The group (i.e., the link clicked) is ran-
domly chosen by the users themselves.

Name of Study Domain Group 1 Group 2

Synthesis Fidelity (
Recognition Rate ↓, %)

FFHQ 62.12 71.79
AFHQ 51.30 50.55

Attribute Consistency (
Agreement Rate ↑, %)

FFHQ 94.12 90.76
AFHQ 89.92 88.26

Table 1. User study results. We can see from the table that our
counterfactual synthesis preserves the visual quality and maintains
the ground truth labels from the user’s perspective.

High quality counterfactual images were generated, as
evidenced by the fact that users had trouble distinguishing
between them. Most users also agree that the counterfac-
tual images do not alter the ground truth with respect to the
target classifier, proving that our methodology is producing
meaningful counterfactuals. Please take into account that
the nature of our recognition system makes human volun-
teers slightly more sensitive to human faces, therefore we
see a little higher recognition rate in the human face (FFHQ)
domain than in the animal face (AFHQ) domain.

A.3. Stability across CLIP phrasing/wording:

We notice that the resulting image depends on the
prompt wording. In our framework, the neutral phrase (e.g.
“a face”) is subtracted after CLIP space encoding, to en-
sure the attribute edit direction is sufficiently unambiguous.
Our tests revealed that, as long as the prompts’ meanings
are descriptive of the object, they will provide comparable
outcomes. For example, on the perceived-age classifier, we
have got similar sensitivity results on “a picture of a per-
son with X”, “a portrait of a person with X”, or with other
synonyms. Examples are shown in Fig. 2.

B. Additional Results of Model Diagnosis

B.1. Additional counterfactual images

Fig. 1 shows more examples of single-attribute counter-
factual images on the Cat/Dog and Perceived Gender classi-
fiers. The output prediction is shown in the top-right corner.
It shows that the model prediction is flipped without chang-
ing the actual target attribute. In addition to binary classi-
fication and key-point detection in our manuscript, we fur-
ther illustrate the extension of ZOOM counterfactuals on se-
mantic segmentation, multi-class classification, and binary
church classifier (BCC) in Fig. 3. Fig. 6 shows more exam-
ples of multiple-attribute counterfactual images.
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Figure 1. Effect of progressively generating counterfactual images on the Cat/Dog classifier (0-Cat / 1-Dog), and the Perceived Gender
classifier (0-Female / 1-Male). Model probability prediction during the process is attached at the top right corner.
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Figure 2. Sensitivity histograms when using four instances of
phrases with a similar concept. Zoom in for better visibility.
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Figure 3. ZOOM counterfactuals on more tasks (segmenta-
tion, multi-class classifier) and additional visual domains (cars,
churches). Zoom in for better visibility.

B.2. Additional histograms

Fig. 4 shows more histograms on the classifiers trained
on CelebA (top) and the classifiers that are intentionally bi-
ased (bottom). The models and datasets are created using
the same method described in Section 4 of the main text.

C. Ablation of Optimization Method
When there are multiple attributes (i.e., N > 1) to opti-

mize, linearizing the cost function as grid in high dimen-
sional space will help to efficiently approximate conver-
gence in limited epochs. Specifically, we have the option
to adopt PGD [1] (i.e., update using η ·sign(∇wL)) for effi-
cient optimization. We compared generating counterfactu-
als with and without projected gradients. Table 2 shows the
visual quality and flip rate of the generated counterfactu-
als. We can observe that ZOOM-PGD image quality is finer
under Structured Similarity Indexing Method (SSIM) [3],
while ZOOM-SGD has a higher flip rate. The images from
ZOOM-PGD is finer since the signed method stabilizes the
optimization by eliminating problems of gradient vanishing
and exploding.

Optimization Classifier SSIM (↑) Flip Rate (%, ↑)

SGD
Perceived Age 0.5732 67.24
Perceived Gender 0.5815 49.40
Mustache 0.5971 36.33

PGD
Perceived Age 0.8065 50.19
Perceived Gender 0.7035 42.84
Mustache 0.7613 25.10

Table 2. The comparison of counterfactuals generated with
stochastic gradient descent (SGD) and projected gradient descent
(PGD) method. We can observe that ZOOM-PGD image quality
is finer under SSIM (Structured Similarity Indexing Method) [3]
metrics, while ZOOM-SGD has a higher flip rate.

Our empirical observation during the experiment is that
ZOOM-PGD frequently oscillates around a local minima of
edit weights and fails to reach an optimal counterfactual.
We hypothesize that the reason of lower flip rates from the
signed method is that the edit weight search is constrained
on nodes of a grid space (the grid unit length is step-size
η), which loses precision and underperforms during coun-
terfactual search.
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Lipstick Classifier 
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Perceived Gender Classifier
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Blond Hair Classifier (Imbalanced Pale Skin) 
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Perceived Gender Classifier (Imbalanced Pale Skin)
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Perceived Gender Classifier (Imbalanced Smiling)

Figure 4. The above histograms show ZOOM on three regularly trained classifiers on CelebA, and the bottom histograms show ZOOM
successfully detects the bias in the manually-crafted imbalanced classifiers.

(a) Evaluating visual fidelity. We show two images and let users choose
the one that they think is edited. The counterfactuals are generated on
Eyeglasses classifier and Cat/Dog classifier.

(b) Evaluating attribute consistency. The user classifies
whether the ground truth is flipped. Example of counterfac-
tual images on Cat/Dog classifier and Eyeglasses classifier is
shown above.

Figure 5. Sample questions in the user study. Each user answers 10 questions for each of the two user studies.
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(a) Multiple-attribute counterfactual for cat/dog classifier.
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(b) Multiple-attribute counterfactual for eyeglasses classifier.
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(c) Multiple-attribute counterfactual for perceived gender classifier.
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(d) Multiple-attribute counterfactual for mustache classifier.
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(e) Multiple-attribute counterfactual for perceived age classifier.

Figure 6. Multi-attribute counterfactual in the human face and animal face domain. The right-up corner of each image records the model
output prediction.
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(a) Effect of λ values for editing beard.
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(b) Effect of λ values for editing pale skin.

Figure 7. Visualization of the effect of different λ values.
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(a) Combination of smiling (w1) and lipstick (w2).
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(b) Combination of pale skin (w1) and blond hair (w2).

Figure 8. Visualization of traversing on directional (attribute) style vectors to validate the effectiveness of multiple attribute editing.



(a) Attribute editing: a cat with green eyes. (b) Attribute editing: a cute cat.

(c) Attribute editing: a dog with round face. (d) Attribute editing: a cute dog.

(e) Attribute editing: a cat with round face. (f) Attribute editing: a cat with pointed ears.

(g) Attribute editing: a dog with open mouth. (h) Attribute editing: a black dog.

Figure 9. Visualization of global edit directions by utilizing the StyleCLIP channel relevance matrix. Images are sampled from the AFHQ
domain using StyleGAN2-ADA. Every column demonstrates an edited image from edit weight w = −30 to w = 30. Weights of five
images are linearly interpolated as {−30,−15, 0, 15, 30}. We can see that global edit directions are generalizable on multiple images.



(a) Attribute editing: an angry face. (b) Attribute editing: a face with eyeglasses.

(c) Attribute editing: a cute face. (d) Attribute editing: a face with blond hair.

(e) Attribute editing: a face with bangs. (f) Attribute editing: a smiling face.

(g) Attribute editing: a happy face. (h) Attribute editing: a face with curly hair.



(i) Attribute editing: a face with beard. (j) Attribute editing: a face with lipstick.

(k) Attribute editing: a tired face. (l) Attribute editing: a skinny face.

(m) Attribute editing: a male face. (n) Attribute editing: a surprised face.

(o) Attribute editing: a face with long hair. (p) Attribute editing: a face with pale skin.

Figure 10. Visualization of global edit directions by utilizing the StyleCLIP channel relevance matrix. Images are sampled from the FFHQ
domain using StyleGAN2-ADA. Every column demonstrates an edited image from edit weight w = −30 to w = 30. Weights of five
images are linearly interpolated as {−30,−15, 0, 15, 30}. We can see that global edit directions are generalizable on multiple images.


