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A. Social Impact
Our work focuses on domain generalization and attempts

to make each training domain contribute to model generaliza-
tion, which validates and further enhances the effectiveness
of domain augmentation strand. This method produces a
positive impact on the society and community, saves the cost
and time of data annotation, boosts the reusability of knowl-
edge across domains, and greatly improves the efficiency.
Nevertheless, this work suffers from some negative influ-
ences, which is worthy of further research and exploration.
Specifically, more jobs of classification or target detection
for rare or variable conditions may be cancelled. Moerover,
we should be cautious about the result of the failure of the
system, which could render people believe that classification
was unbiased. Still, it might be not, which might be mislead-
ing, e.g., when using the system in a highly variable unseen
target domain.

B. Algorithm of DCG
In this work, we propose a Domain Convex Game (DCG)

framework to guarantee and further enhance the validity of
domain augmentation approaches by casting DG as a convex
game between domains. Here, we summarize the training
process of DCG based on the discussions in main body as
Algorithm 1.

C. Experimental Details
For all benchmarks, we conduct the commonly used leave-

one-domain-out experiments [8], where we choose one do-
main as the unseen target domain for evaluation, and train
the model on all remaining domains. We adopt the standard
augmentation protocol as in [2], all images are resized to
224 × 224, following with random resized cropping, hori-
zontal flipping and color jittering. And the Fourier domain
augmentation strategy utilized to diversify source domains
closely follows the implementations in [14]. The network
backbone is set to ResNet-18 or ResNet-50 pre-trained on
ImageNet [4] following other related works. We train the n-

Algorithm 1 The Algorithm of Domain Convex Game.
Input: P+Q diversified source domainsDs∪Daug

s ; Hyper-
parameters: ω, k.

1: randomly initialize model parameters θ.
2: for iter in iterations do
3: Randomly sample a mini-batch of Ds as B and a

mini-batch of Daug
s as Baug .

4: Split: D̃s and D̃t←− B, Pick out: D̃aug
s from Baug .

5: Construct coalitions S, T by randomly sampling from
D̃s ∪ D̃aug

s ; construct coalitions S ∪ T, S ∩ T .
6: Calculate supermodularity regularization loss Lsm.
7: Pick out low-quality samples Ddel with the top-k

score.
8: Calculate supervision loss Lsup.
9: Update θ = argminθ Lsup + ωLsm.

10: end for

etwork using mini-batch SGD with batch size 16, momen-
tum 0.9 and weight decay 5e-4 for 50 epochs. The initial
learning rate is 0.001 and decayed by 0.1 at 80% of the to-
tal epochs. The meta step size α is set to be the same as
the learning rate. For the hyper-parameters, i.e., the weight
of regularization loss ω and the number of discarded bad
samples in each iteration k, their values are selected on vali-
dation data following standard practice, where we use 90%
of available data as training data and 10% as validation data.
Specifically, we set ω = 0.1 and k = 5 for all experiments.
Our framework is implemented with PyTorch on NVIDIA
GeForce RTX 3090 GPUs. All results are reported based on
the average accuracy over three independent runs for a fair
comparison.

D. Additional Results
D.1. Time cost analysis

We conduct experiments to study the efficiency of our
method in the training and inference stages respectively, and
the results are shown in Table 2. For the training stage, the
time cost of DCG is indeed relatively high, which is due to
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Methods Art Cartoon Photo Sketch Avg.

ResNet18

MLDG [9] 78.70 73.30 94.00 65.10 80.70
L2A-OT [19] 83.30 78.20 96.20 73.60 82.80
RSC [5] 83.43 80.31 95.99 80.85 85.15
DSU [10] 83.60 79.60 95.80 77.60 84.10

DeepAll [18] 77.63±0.84 76.77±0.33 95.85±0.20 69.50±1.26 79.94
MASF [3] 80.29±0.18 77.17±0.08 94.99±0.09 71.69±0.22 81.04
DDAIG [18] 84.20±0.30 78.10±0.60 95.30±0.40 74.70±0.80 83.10
MixStyle [20] 84.10±0.40 78.80±0.40 96.10±0.30 75.90±0.90 83.70
FACT [14] 85.37±0.29 78.38±0.29 95.15±0.26 79.15±0.69 84.51
STNP [6] 84.41±0.62 79.25±0.98 94.93±0.07 83.27±2.03 85.47

DCG (ours) 85.94±0.21 80.76±0.36 96.41±0.17 82.08±0.44 86.30

ResNet50

RSC [5] 87.89 82.16 97.92 83.35 87.83
PCL [15] 90.20 83.90 98.10 82.60 88.70

DeepAll [18] 84.94±0.66 76.98±1.13 97.64±0.10 76.75±0.41 84.08
FACT [14] 89.63±0.51 81.77±0.19 96.75±0.10 84.46±0.78 88.15
DDG [17] 88.90±0.60 85.00±1.90 97.20±1.20 84.30±0.70 88.90
STNP [6] 90.35±0.62 84.20±1.43 96.73±0.46 85.18±0.46 89.11

DCG (ours) 90.24±0.48 85.12±0.79 97.76±0.13 86.31±0.64 89.84

Table 1. Leave-one-domain-out results on PACS.

the use of meta learning when constructing the regularization
term and the backpropagation when calculating the score for
sample filter. For substitute, we may edit the backpropaga-
tion path that computes gradients of inputs only on a smaller
subnetwork to reduce time cost. Besides, we can see that
for the inference stage, our DCG method is as efficient as
other methods and does not incur additional time costs. Note
that this work is an innovative effort to study the relation
between model generalization and domain diversity, which
is in a preliminary stage. And we will further explore more
efficient techniques in future research.

Methods Training Inference

DEEPALL [14] 168 s 5 s
FACT [14] 186 s 5 s
MLDG [9] 275 s 5 s

DCG w/o Filter. 349 s 5 s
DCG 467 s 5 s

Table 2. Running Time per Epoch.

D.2. Experimental Results with Error Bars

For the sake of objective, we run all the experiments
multiple times with random seed. We report the average
results in the main body of paper for elegant, and show the
complete results with error bars in the form of mean±std
below (Table. 1, 3, 4).



Methods Art Clipart Product Real Avg.

MLDG [9] 52.88 45.72 69.90 72.68 60.30
SagNet [11] 60.20 45.38 70.42 73.38 62.34
RSC [5] 58.42 47.90 71.63 74.54 63.12
L2A-OT [19] 60.60 50.10 74.80 77.00 65.60
DSU [10] 60.20 54.80 74.10 75.10 66.10

DeepAll [18] 57.88±0.20 52.72±0.50 73.50±0.30 74.80±0.10 64.72
DDAIG [18] 59.20±0.10 52.30±0.30 74.60±0.30 76.00±0.10 65.50
MixStyle [20] 58.70±0.30 53.40±0.20 74.20±0.10 75.90±0.10 65.50
FACT [14] 60.34±0.11 54.85±0.37 74.48±0.13 76.55±0.10 66.56
STNP [6] 59.55±0.21 55.01±0.29 73.57±0.28 75.52±0.21 65.89

DCG (ours) 60.67±0.14 55.46±0.32 75.26±0.18 76.82±0.09 67.05

Table 3. Leave-one-domain-out results on Office-Home.

Methods Clipart Painting Real Sketch Avg.

DeepAll [18] 65.30 58.40 64.70 59.00 61.86

ERM [13] 65.50 ± 0.3 57.10 ± 0.5 62.30 ± 0.2 57.10 ± 0.1 60.50
MLDG [9] 65.70 ± 0.2 57.00 ± 0.2 63.70 ± 0.3 58.10 ± 0.1 61.12
Mixup [16] 67.10 ± 0.2 59.10 ± 0.5 64.30 ± 0.3 59.20 ± 0.3 62.42
MMD [7] 65.00 ± 0.5 58.00 ± 0.2 63.80 ± 0.2 58.40 ± 0.7 61.30
SagNet [11] 65.00 ± 0.4 58.10 ± 0.2 64.20 ± 0.3 58.10 ± 0.4 61.35
CORAL [12] 66.50 ± 0.2 59.50 ± 0.4 66.00 ± 0.6 59.50 ± 0.1 62.87
MTL [1] 65.30 ± 0.5 59.00 ± 0.4 65.60 ± 0.4 58.50 ± 0.2 62.10

DCG (ours) 69.38±0.19 61.79±0.22 66.34±0.27 63.21±0.09 65.18

Table 4. Leave-one-domain-out results on Mini-DomainNet.
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