Appendix of ‘Unbiased Multiple Instance Learning for
Weakly Supervised Video Anomaly Detection’

This appendix is organized as follows:

 Section A.1 provides more details about our training ob-
jectives. We detail the implementation of the self-training
used in our experiments: FixMatch [7].

» Section A.2 explains about how the feature clustering
boosts the UMIL during training.

* Section A.3 shows more comparisons and standard devi-
ations on UCF-crime [8], and TAD [6]. In particular, we
first discuss the statics of anomaly events in UCF-crime in
Section A.3.1, and then provide more experimental results
of the proposed UMIL.

* Section A.4 gives the full version of ROC curves on vari-
ous benchmarks. This is a supplement to Figure. 6 in the
manuscript.

* Codes are also provided, which include the training and
testing scripts on the two classic datasets. The setup in-
structions and commands used in our experiments are in-
cluded in the README . md file.

A.1. Loss Objectives

In this section, we give the details of the self-training ob-
jective L used in the MIL pre-training and UMIL training,
as in Eq.(1) and Eq.(4) in the manuscript, then the overall
MIL pre-training objective is derived as the following:

where A stands for the balance weight. The overall objective
of UMIL is derived correspondingly. Note that self-training
strategy is an important approach popular in domain adap-
tion [1-3, 5, 10]. In this work, we introduce self-training
to boost feature learning in WSVAD by incorporating data
augmentation of FixMatch [7]. Specifically, along with the
training of MIL, we generate pseudo labels with original
video snippet data and seek to minimize the entropy be-
tween the predictions of augmented data as well as original
data. Given the pair of feature x and x’ from the original
data and random augmentation data, respectively, the Fix-
Match-driven self-training loss derives as:

L = 1(argmaxf(x) > §)BCE(x', argmax f(x)), (A2)
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Figure Al. (a) The statistics of anomaly event length and (b) the
ratio of anomaly event length to coarse snippet length.

here, 1 represents the indicator function that returns 1 if
the condition is met, § is the confident threshold, and BCE
corresponds to the binary cross entropy mentioned in the
manuscript. In the experiments, we used grid searching for
finding a proper §. The results are listed in Section A.3.

A.2. Discussion on clustering

During the training of UMIL, wrong clustering can bring
risks. However, the modern pre-trained backbones (e.g.,
CLIP) capture rich prior knowledge, such that the intrinsic
difference between normal and abnormal snippets is suffi-
ciently expressed in the feature space. This ensures that 1)
during clustering, the normal/abnormal snippets can be sep-
arated into different clusters; and 2) combining C- and .A-
supervision in Eq. 4 leads to a classifier using true anomaly
features instead of context for prediction (e. g., vertical black
line in Figure 2). In future work, we will explore other
prior knowledge or inductive bias to further separate nor-
mal/abnormal snippets.

A.3. Additional Experiments
A.3.1. Pre-processing Analysis

In this section, we first analyze the rationality in the pre-
processing step of previous WSVAD approaches. As men-
tioned in Section 4.2 of the manuscript, existing works fol-
low the average feature pipeline. They first divide video se-
quences into multiple coarse snippets, e.g. 1 video 32 snip-
pets, then take the snippet-level average features as inputs
into anomaly detectors. However, real-world anomalies are
extremely rare and short in time. The subtle anomaly events



are easily diluted or even covered by normal patterns after
the spatio-temporal pooling operation.

To better analyze the problem, we annotate the large
training set of UCF-crime [8]. In detail, 5 trained annotators
are involved in the process and the final labels are generated
by averaging the results. In Figure A1, we depict the statis-
tics of the anomaly events’ length. The average length of
anomaly events is about 698 frames (extracted from videos
with 30FPS), compared with an average coarse snippets’
length of 200 frames. Note that coarse snippets’ length is
obtained by dividing each video into 32 snippets, which is
widely used as the default in existing works [6, 8,9]. We
also depict the ratio of anomaly event length to coarse snip-
pet length in Figure Alb. As is shown, there are 164 out of
925 anomaly events whose length ratios are less than 1. It
means that these anomaly events are short than the coarse
snippet. More importantly, the length ratios of 86 anomaly
events are less than 0.5. Considering the anomalies only
take place in a small part of whole frames, the anomaly
information is inevitably concealed in the spatio-temporal
feature pooling process, which is hurtful for video anomaly
detection.

A.3.2. Feature Fine-tuning Analysis

When the backbone is loaded with pre-trained weights
on kinetics 400 and frozen during UMIL training, the
performance will drop from 86.75% (with fine-tuning) to
83.44% (frozen) on UCF, and 92.93% to 90.71% on TAD.
This validates that fine-tuning in UMIL enables learning a
representation tailored for WSVAD, which is beneficial for
anomaly detection.

A.3.3. Self-training In UMIL

In this work, we use the learned anomaly classifier to
generate pseudo-labels on samples in the ambiguous set .A.
Consequently, the ambiguous samples, which are largely
neglected in existing MIL, can further participate in our
UMIL with pseudo-labels. When the self-training loss is
removed, the results of UMIL are 83.66% (] 3.09%) on
UCF and 91.74% (] 1.19%) on TAD. This validates the ef-
fectiveness of the self-training loss. Further experimental
analysis of the Self-training can be found in the following.

A.3.4. Confident Threshold in Self-training

In Table A1, we list the results of adding self-training to
MIL baseline model with varying confident threshold §. By
increasing the confident threshold, less and highly confident
samples are involved in the objective of self-training. As is
shown in the table, 0.8 is a suitable threshold that the self-
training tool obtains good results on both datasets. When
the threshold is up to 1, few samples will be selected leading
to the ineffectiveness of self-training.

Threshold(%) 03 05 07 08 09 1.0

AUCo (%)-UCF 809 812 819 820 815 807
AUCo (%)-TAD 89.0 90.1 90.5 908 90.1 89.1

Table Al. Ablation on the Confident threshold in self-training
based on MIL model on UCF-Crime and TAD.

Threshold(%) 05 06 07 08 09

AUCp (%) - UCF 864 86.6 86.8 86.8 86.6
AUCo (%)-TAD 925 927 928 93.0 929

Table A2. Ablation on the similarity threshold in clustering on
UCF-Crime and TAD.

A.3.5. Similarity Threshold in Clustering

The cluster component alone is for separating nor-
mal/abnormal snippets in the ambiguous set A as two clus-
ters. It doesn’t directly benefit the learning of anomaly clas-
sifier f. If the A-supervision is removed, f will be trained
only on confident normal/abnormal snippets, and our ap-
proach will basically reduce to the existing MIL with simi-
lar performance. We also conducted experiments to analyze
the effect of varying similarity thresholds in clustering. The
experimental results are listed in Table A2. As we can see,
the performance is insensitive to the change of the threshold
in cosine similarity in Eq. (2) of the manuscript. Because
the clustering property is acquired along with the feature
fine-tuning of the backbone. Then 0.8 is chosen as the de-
fault similarity threshold in clustering.

A.3.6. Confident Sample Selection Strategy

In this section, we also conducted experiments to com-
pare Historical Variance with Max Confidence in the confi-
dent sample selection strategy. Specifically, we select the
top k (%) abnormal and normal snippets with maximum
confidence in abnormal videos as the confident set C. As
we can see, the best AUC performances of Historical Vari-
ance (86.8% for UCF-crime and 93.0% for TAD) are supe-
rior to those of Max Confidence (85.9% for UCF-crime and
92.2% for TAD). As mentioned in the manuscript (Section
3.2 Step 1), the predictions of the ‘easy’ normal or abnor-
mal snippets tend to quickly converge to confident normal
or anomaly with small variance over time. As a result, col-
lecting historical information of score variance is a better
choice for distinguishing confident and ambiguous samples.

A.3.7. Comparison on ShanghaiTech

We also added experiment on ShanghaiTech benchmark
[4]. We failed to implement our method on Ped2, due to
the absence of data splits. We achieved comparative per-



Threshold(%) 10 30 50 70 90

AUCo (%)-UCF 859 857 853 84.6 838
AUCop (%)-TAD 92.1 922 920 914 9038

Table A3. Ablation on the max confident threshold to divide the
confident/ambiguous snippet set on UCF-Crime and TAD.
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Figure A2. Full version of the ROC curves on UCF (left) and TAD
(Right).

formance with existing SOTAs as shown below, and be-
lieved that there is potential for further improvements given
more time. Additionally, the high accuracy on this dataset
indicates that it may contain mainly apparent anomalies,
which explains why MIL-based methods already perform
well (Section 3.1).

Method
AUC(%)

GCN RTFM Baseline
84.44 9721 95.20

Ours
96.78

A 4. Visualization of ROC Curves
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