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Reference Member Predictions

Figure 1. Reference generated by the chairman model (1st column with boxes in green and box-level acquisition scores), and corresponding
member predictions (2nd-5th columns with boxes in blue). Experiments are performed at the first active learning cycle under the VOC-sup
setting. We only show top-ranking member predictions for ease of visualization.
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Figure 2. Reference generated by the chairman model (1st column with boxes in green and box-level acquisition scores), and corresponding
member predictions (2nd-5th columns with boxes in blue). Experiments are performed at the first active learning cycle under the COCO-
sup setting. We only show top-ranking member predictions for ease of visualization.

sComPAS Ablations 0 1 2 3 4 5 6 7 8 9 Inference Time (s)

Members2Members 68.00±0.20 73.15±0.41 75.85±1.26 78.00±0.20 78.60±0.20 79.50±0.34 80.00±0.06 80.55±0.27 81.10±0.20 81.20±0.20 0.6739
DetectorRef2Members 68.00±0.20 73.40±0.34 76.35±0.55 77.70±0.34 78.75±0.41 79.50±0.20 79.75±0.13 79.95±0.27 80.10±0.14 80.70±0.28 0.1656

ChairmanRef2Members (ours) 68.00±0.20 73.57±0.57 76.40±0.30 78.23±0.23 79.43±0.06 80.30±0.17 80.97±0.06 81.37±0.15 81.73±0.12 82.13±0.25 0.1667

Table 1. Ablation study on the existence and the source of the acquisition reference under the VOC-sup setting. The accuracy (%) and time
consumption are averaged over 3 runs. Inference Time in seconds denotes the average forward time per image during the acquisition stage.
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A. Efficacy of the Acquisition Reference
In this section, we validate the use of acquisition refer-

ence in terms of both accuracy and efficiency. The compar-
ison is conducted under the VOC-sup setting on the same
server with 4 NVIDIA RTX 3090. We set the committee
size as 10 in accordance with our main results.

The existence of the reference. Without the reference,
the Members2Members variant constructs a committee for
each instance by traversing every prediction from all other
members, as done in WhiteBoxQBC [19]. In contrast, with

a reference incorporated, the assignment procedure can be
reduced to comparing between it and other member hy-
potheses. As shown in Tab. 1, if facilitated by the ref-
erence, such as in our ChairmanRef2Members, the infer-
ence for acquisition takes about 0.1667 seconds per image
in practice. It is approximately 4× faster than the Mem-
bers2Members ablation, which indicates that the reference
is essential when scaling up to larger datasets. Besides,
since the augmentations used to construct the committee is
diverse and relatively strong, basing the informativeness es-
timation solely on member outputs is susceptible to noise
and randomness. As the detection accuracy shows, with a
robust and reliable reference, the quality of active sampling
consistently improves over cycles.



Cycle
M

1 4 10
0 68.00±0.20 68.00±0.20 68.00±0.20
1 72.97±0.35 73.83±0.47 73.57±0.57
2 76.37±0.21 76.83±0.32 76.40±0.30
3 78.10±0.46 78.17±0.38 78.23±0.23
4 78.93±0.31 79.20±0.10 79.43±0.06
5 79.67±0.31 79.90±0.35 80.30±0.17
6 80.33±0.12 80.50±0.35 80.97±0.06
7 80.87±0.47 80.83±0.25 81.37±0.15
8 81.37±0.12 81.33±0.23 81.73±0.12
9 81.70±0.26 81.83±0.15 82.13±0.25

Table 2. Sensitivity to the input-end committee size under the
VOC-sup setting.

The source of the reference. To obtain reliable refer-
ences as query candidates, the original image is fed into
the chairman model, whose predictions are adopted as ref-
erence in our proposed ComPAS design. For compari-
son with the chairman, we experiment with the Detector-
Ref2Members variant, where the reference is obtained from
the detector itself instead of its temporal ensemble. As the
results in Tab. 1 show, with almost equal computational
cost, the quality of chairman-generated references beat the
non-EMA alternative by a large margin.

Visual inspection of our reference. In Fig. 1 and Fig. 2,
we visualize top-ranked reference hypotheses according to
our disagreement scores, as well as member predictions as-
signed to them. The experiment is performed at the 1st
cycle under the VOC-sup and COCO-sup settings respec-
tively. For ease of visualization, we trim member predic-
tions based on their scores, i.e., contributions to the acquisi-
tion score of the reference box, so that only top-ranking box
predictions are shown. We observe that the chairman model
can recognize well-learned targets and locate some salient
objects as reference in a stable manner, whereas those per-
turbed members can bring considerable variations and ran-
domness. Member predictions challenge the judgments of
the chairman or supplement with potential candidates, so
that controversial regions of the input space can be found.
For example, in Fig. 1, the bird in the first row obtains a
consensus, whereas the branch next to it is mistakenly rec-
ognized by the chairman as a bird with spread wings, which
is disputed by the committee. Similar observations can also
be made from the camera held by the girl shown in Fig. 2.
Besides, the proposed metric also prioritizes targets that are
challenging to localize. Take the 3rd row in Fig. 2 for exam-
ple: the committee has a disagreement over the train body,
which leads to a higher acquisition score. The qualitative re-
sults further indicate that the proposed disagreement quan-
tification under strong variations well identifies the input
space where the current model neglects. Once actively an-
notated, they can effectively provide informativeness and
guarantee consistent improvements in later model updates.

Methods M #Trainable Parameters (M) Inference Time (s)

MeanEntropy-Ensemble 3 123.51 0.0310
MeanEntropy-MCDropout 25 41.17 0.2400

sComPAS (ours)

1 41.17 0.0277
4 41.17 0.0741

10 41.17 0.1667
15 41.17 0.2582

Table 3. Comparison with the ensemble-based methods un-
der the VOC-sup setting. M represents the size of the ensem-
ble/committee following the implementation of [2,4]. The number
of trainable parameters are reported in millions. Inference Time in
seconds denotes the average forward time per image during the ac-
quisition stage.

B. Sensitivity to the Input-end Committee Size

As there is no consensus on the appropriate committee
size to use [21], we experiment under the VOC-sup set-
ting with a varying number of members M . As shown in
Tab. 2, although one member prediction can work well un-
der the proposed pipeline, providing more data variations
on the input-end helps the model identify more informative
and representative samples and provides robustness, which
guarantees further improvements and stability in a cheap but
effective way.

C. Comparison with Ensemble-based Methods

We further compare the proposed ComPAS with well-
performed ensemble-based methods, including Ensem-
ble [2] and MCDropout [7]. Following [4], those multi-
model methods are implemented based on MeanEntropy,
which is also the best single-model baseline in our experi-
ments. The detection accuracy has been presented in Fig. 1,
Fig. 3 and Tab. 1 of the main paper, and the numerical re-
sults of figures are reported in Tab. 4 and Tab. 5 respectively.
In Tab. 3, we detail the size of the ensemble/committee,
the required training time and the inference time per image
for informativeness estimation. The experiments are con-
ducted under the VOC-sup setting on the same server with
4 NVIDIA RTX 3090.

As can be seen, even when there is only one member, i.e.
M = 1, our method retains its overall supremacy in both
effectiveness and efficiency. Built upon it, we provide flexi-
bility in the committee size to suit the needs of different end
applications. With more members incorporated, better de-
tection performance can be further pursued via more input
variations. Since the committee construction only happens
during the acquisition stage, and image perturbations can
be processed in one feed-forward pass in practice, the extra
costs incurred are marginal in contrast to ensemble [2] and
MCDropout [7].
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Figure 3. Analysis of the loss weight ratio among different lev-
els of supervision (full-labeled: partial-labeled(: unlabeled)) un-
der the VOC-sup and VOC-semi settings.
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Figure 4. Weaker initialization (cycle0) and the started state (cy-
cle1) under lower-data regimes under the VOC-sup setting.

D. Analysis of Overall Loss Weights

Our overall objective functions for both training settings
give the same relevance to different levels of supervision.
To analyze the importance of the fully labeled subset versus
others, we specifically finetune the weight of them under
both VOC-sup and VOC-semi settings.

Results in Fig. 3 show that fully labeled images are more
informative when they dominate the data pool, but increas-
ing their relevance cannot guarantee consistent improve-
ment as the distribution changes along learning cycles. In
contrast, re-weighting losses by the sample ratio keeps the
method simple but effective.

50K 100K 150K 200K 250K 300K
#boxes

20

22

25

27

30

32

35

m
AP

(%
)

Random
MeanEntropy
WhiteBoxQBC
CoreSet
LearningLoss*

MIAOD*
ALMDN*
MeanEntropy-MCDropout*
MeanEntropy-Ensemble*
sCOMPAS (ours)

Figure 5. Box-level comparative results on COCO-sup with a 40K
per-cycle budget.

E. Performance under Different Active Learn-
ing Settings

As active learning is known to be sensitive to set-
tings [13], in this section, we validate our observations un-
der different scenarios.

Performance with weaker starting points. In Fig. 4,
we start the detector under lower-data regimes without over-
fitting. Results of the initialization with 3K, 2K and 1K
boxes and of the corresponding started states demonstrate
that our active sampling strategy is robust to weaker initial-
ization and outperforms competitors.

Performance with a larger acquisition batch size.
We conduct experiments on the COCO dataset under the
COCO-sup setting with a larger acquisition batch size. The
iterations are initialized with 50K boxes, the same as the
experiments shown in Fig. 3M of the main paper. In each
active learning cycle, we append 40K boxes based on re-
spective query and annotation strategies. Results of three
independent runs are plotted in Fig. 5 and numerically de-
tailed in Tab. 6 respectively, which show that the proposed
method is superior regardless of the acquisition batch size.

F. Pseudo-Active Synergy Visualization over
Active Learning Cycles

In Fig. 6, We present the iteration of pseudo-labels pre-
dicted by the chairman model accompanied by active hu-
man annotations across the learning cycles. Images are
highlighted in red frames if the active annotation happens in
those steps. We find that the proposed acquisition function
prioritizes challenging targets, such as small, occluded (e.g.
cars in the 1st and 4th images) or deviant (e.g. the cow in the
last images mistakenly recognized as a horse) ones. Mean-
time, most unlabeled targets can be covered by pseudo-label
generation, which gets better in both classification and lo-



Active Annotations Pseudo Labels over Active Learning Cycles
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Figure 6. Iteration of pseudo labels across active learning cycles accompanied by actively annotated targets. For each set of images, we
highlight the image in red frame if the active annotation happens in that step.



Methods 0 1 2 3 4 5 6 7 8 9

VOC-sup

Random 68.00±0.20 71.10±0.56 73.03±0.60 74.23±0.38 75.93±0.31 77.07±0.23 77.77±0.21 78.60±0.10 79.23±0.15 79.80±0.10
MeanEntropy 68.00±0.20 72.60±0.44 74.87±0.50 76.33±0.45 77.83±0.31 78.77±0.31 79.37±0.15 80.30±0.20 80.73±0.32 81.00±0.20

WhiteBoxQBC 68.00±0.20 71.37±0.85 73.23±0.31 74.33±0.47 75.30±0.78 76.73±0.74 77.17±0.68 78.13±0.45 78.67±0.65 79.20±0.26
CoreSet 68.00±0.20 71.20±0.50 73.23±0.32 75.00±0.53 76.03±0.35 77.17±0.47 77.97±0.40 78.93±0.42 79.47±0.45 79.87±0.31

LearningLoss* 66.70±0.89 68.10±1.25 69.77±0.87 70.43±0.81 71.33±0.87 72.47±0.59 72.97±0.45 73.57±0.51 74.57±0.40 74.73±0.91
ALMDN* 67.50±0.71 70.00±0.28 70.85±0.07 72.05±0.64 73.10±0.71 73.65±0.92 74.35±0.92 75.25±0.92 75.45±1.06 76.35±0.78

MeanEntropy-MCDropout* 68.87±0.59 73.17±0.25 75.27±0.15 76.90±0.20 78.07±0.35 79.00±0.10 79.70±0.00 80.40±0.35 80.77±0.15 81.40±0.35
MeanEntropy-Ensemble* 67.87±0.23 72.07±0.25 74.70±0.20 75.80±0.44 77.30±0.10 78.43±0.31 79.30±0.17 79.80±0.17 80.70±0.26 81.13±0.15

BoxCnt 68.00±0.20 69.87±0.32 71.20±0.56 72.27±0.45 73.20±0.56 74.00±0.17 74.83±0.32 75.53±0.49 76.50±0.46 77.17±0.32
sCOMPAS (ours) 68.00±0.20 73.57±0.57 76.40±0.30 78.23±0.23 79.43±0.06 80.30±0.17 80.97±0.06 81.37±0.15 81.73±0.12 82.13±0.25

VOC-semi

ActiveTeacher 77.80±1.15 78.84±0.27 79.24±0.31 80.02±0.52 80.27±0.28 80.62±0.39 80.90±0.40 81.26±0.12 81.56±0.40 82.01±0.10
mCOMPAS (ours) 79.23±0.51 79.97±0.21 80.63±0.61 81.37±0.31 81.97±0.31 - - - - -

Table 4. MAP50 and standard deviation (%) under VOC-sup and VOC-semi settings, with 3K boxes for initialization and 1K boxes for
each active learning cycle. Results reported are averaged over 3 independent runs. We stop the learning of mCOMPAS after it far exceeds
the fully supervised performance (81% mAP50). The best result of each cycle is highlighted in bold.

calization across active learning cycles. Through iterative
knowledge gain and self-supervision, the synergy between
them is effectively exploited.

G. Implementation Details
In addition to the general settings of our unified code-

base introduced in the main paper, we detail the re-
implementation of compared methods in this section.

FullSup. For reference, we also report the fully su-
pervised (FS) performance, denoted by FullSup, given the
same model, augmentations and runtime settings as in AL
experiments. Thus r% Sup refers to r% of the FS perfor-
mance instead of a data split.

MeanEntropy. After NMS (Non-maximal suppres-
sion), we calculate the entropy of a box candidate based on
the predictive probability of its most confident class. Then
the uncertainty scores are averaged over the image.

WhiteBoxQBC [19]. Following the Algorithm. 1 pro-
vided in the paper, we take the NMS outputs of the mul-
tiple scales of Faster R-CNN to construct the ‘commit-
tee’, among which all classes and pair-wise bounding box
predictions are traversed to estimate the image uncertainty
based on predictive margin.

CoreSet [20]. We apply global average pooling on the
multi-level features extracted by the Feature Pyramid Net-
work(FPN) of Faster R-CNN, which are then concatenated
as the latent space representation of an image. We imple-
ment the k-Center-Greedy algorithm to select unlabeled im-
ages during the acquisition stage.

LearningLoss [28]. The multi-level features extracted
by the Feature Pyramid Network (FPN) of Faster R-CNN
are fed into the loss prediction module. The gradient from
the loss prediction module is stopped at 0.8× total iterations
following the implementation of the paper. We finetune the
weight of the learned loss and use 0.3 in consideration of
convergence and better performance.

ALMDN [4] Following the code published by the au-
thors, we turn the detection heads of Faster R-CNN into four
Gaussian mixture models (GMMs), and take the maximum
over epistemic and aleatoric uncertainty for classification
and localization as the score of an unlabeled image.

MIAOD [29] Following the code published by the au-
thors, the second detection head and an additional multi-
instance learning (MIL) head are built upon Faster R-
CNN, and the disagreement between the two classification
branches is used as an uncertainty indicator. The weight
of MIL is finetuned as 0.1 in consideration of convergence
and better performance. The results of MIAOD obtained
from our re-implementation significantly surpass those re-
ported by the authors on the COCO dataset. However, un-
der the VOC setting, consistent improvement cannot be as-
sured over the active learning cycles after parameter search,
among which the best performance we can get is no more
than 72% mAP50. Experiments with the code provided by
the authors under the same budget also confirm our obser-
vation, where we only get around 70% mAP50 in the last
cycle. This might suggest that MIAOD is less applicable
to the low-data regime. Thus, the results of MIAOD on the
VOC dataset are not reported in the main paper.

MCDropout [7]. Following the practice in [4], the adap-
tion of MCDropout to the detection task is achieved by
image-level estimation followed by averaging the results of
25 forward passes. Dropout layers with p = 0.1 are in-
serted at the last two stages after each bottleneck module of
the ResNet backbone. The image-level informativeness can
be estimated by different acquisition functions. Here we
also follow the implementation in [4] to use entropy, which
performs the best under our experimental settings.

Ensemble [2]. Similarly, we establish an ensemble of
three independent detectors following [4]. The informative-
ness estimation and result ensemble are the same as the MC-
Dropout implementation.



Methods 0 1 2 3 4 5 6 7 8 9

COCO-sup

Random 22.50±0.10 24.13±0.12 24.73±0.06 25.37±0.21 25.90±0.17 26.37±0.15 26.67±0.06 27.23±0.06 27.67±0.15 27.87±0.23
MeanEntropy 22.50±0.10 25.07±0.29 25.70±0.26 26.40±0.26 26.93±0.25 27.30±0.30 27.77±0.38 28.17±0.25 28.33±0.32 28.73±0.35

WhiteBoxQBC 22.50±0.10 24.03±0.15 24.93±0.15 25.50±0.10 26.10±0.26 26.47±0.06 27.03±0.32 27.53±0.40 27.97±0.42 28.33±0.47
CoreSet 22.50±0.10 24.23±0.25 25.00±0.44 25.40±0.17 25.93±0.25 26.47±0.31 26.90±0.17 27.30±0.10 27.63±0.29 28.03±0.15

LearningLoss* 23.27±0.25 23.63±0.23 23.90±0.26 24.03±0.23 24.20±0.20 24.33±0.06 24.53±0.06 24.80±0.20 24.90±0.20 25.13±0.21
MIAOD* 20.70±0.28 22.90±0.14 23.70±0.57 24.70±0.42 25.00±0.42 25.45±0.78 25.85±0.64 26.30±0.57 26.85±0.35 27.30±0.28
ALMDN* 22.93±0.21 23.83±0.67 23.90±0.35 23.97±0.25 24.23±0.38 24.47±0.38 24.60±0.26 24.90±0.17 25.23±0.35 25.73±0.35

MeanEntropy-MCDropout* 23.00±0.17 25.60±0.36 26.37±0.31 26.90±0.00 27.53±0.06 27.93±0.12 28.23±0.15 28.67±0.06 29.23±0.25 29.37±0.21
MeanEntropy-Ensemble* 22.53±0.12 24.67±0.15 25.27±0.25 25.80±0.10 26.37±0.12 26.73±0.06 27.10±0.10 27.27±0.06 27.63±0.15 27.97±0.25

sCOMPAS (ours) 22.50±0.10 26.25±0.35 28.30±0.14 29.75±0.35 30.75±0.35 31.45±0.21 32.20±0.14 32.65±0.21 33.15±0.07 33.50±0.00

COCO-semi

ActiveTeacher 29.16±0.10 30.57±0.04 31.09±0.01 31.61±0.07 31.90±0.01 32.21±0.13 32.44±0.02 32.66±0.05 32.81±0.08 33.01±0.16
mCOMPAS (ours) 32.30±0.10 33.07±0.06 33.60±0.00 33.83±0.06 34.30±0.20 34.70±0.10 35.00±0.10 35.30±0.17 35.50±0.10 35.73±0.12

Table 5. MAP and standard deviation (%) under COCO-sup and COCO-semi settings, with 50K boxes for initialization and 20K boxes for
each active learning cycle. Results reported are averaged over 3 independent runs. The best result of each cycle is highlighted in bold.

BoxCnt BoxCnt is devised by us to attack the image-
level estimation for active detection. This hack is achieved
by naively prioritizing unlabeled images with the most num-
ber of box predictions after NMS.

H. Related Work Beyond Active Learning
The main paper discusses widely used and most re-

cent acquisition functions, ensemble models and evaluation
methods for active learning. In addition to it, we give a
more extensive survey of literature related to the proposed
framework and method in this section.

Consistency regularization. Active learning estimates
predictive consistency as an uncertainty indicator to sam-
ple unlabeled candidates, based on which images with the
most inconsistent hypotheses are queried for human anno-
tation. To this end, previous methods measure the disagree-
ment between multiple models or heads [2,4,19,22,29], and
the robustness of the output after noise perturbation [10] or
horizontal flip [5] of the image.

While the consistency estimation of active learning
mainly happens in the acquisition stage, quite similarly,
semi-supervised learning (SSL) [9, 15, 23, 27] encourages
consistency in the outputs of realistic image perturbations
during training. The shared motivation behind them is to
find a smooth manifold for the dataset so that the version
space of the model is minimized [1, 15, 21]. Their goals are
further aligned in [8] for active classification, where under
the semi-supervised learning framework, Gao et al. sam-
ple images with inconsistent predictions that the model has
difficulty self-learning via consistency regularization. Most
recent active detection methods also draw on advanced
semi-supervised learning (SSL) techniques. For example,
Mi et al. [12] achieve active sampling under the frame-
work of the unbiased teacher [11], a state-of-the-art semi-
supervised detection method to exploit all available data.
But their informativeness estimation is based on entropy
and class diversity, which is not aligned with the training

objective. Elezi et al. [5] measures the Kullback-Leibler di-
vergence between the predictive distributions of flipped im-
ages. They also provide offline pseudo-labels for unlabeled
images with confident predictions, so that human-labeled,
pseudo-labeled and unlabeled images are all involved in
consistency-based model optimization.

In comparison to previous studies, the proposed Com-
PAS method provides sufficient perturbations as the testing
ground for disagreement estimation, aligns the consistency-
oriented goal in model training and active acquisition, and
supports both labeled-only and mixed-supervision learning.

Sparse annotation for object detection. Sparsely an-
notated object detection (SAOD) [14, 17, 25, 26, 30], deals
with the interference of unlabeled labels, which will be
considered as hard negatives during the training of detec-
tors. The methods in this field mainly fall into two classes:
loss re-weighting and pseudo-labeling. Soft sampling [26]
and Background Re-calibration [30] trust the judgements
of the detector and accordingly adjust the weights of neg-
ative proposals. More recent methods draw on a Siamese
network [25] or consistency regularization [17] to generate
pseudo-labels for unlabeled regions.

The proposed box-level active detection framework in-
evitably incurs the similar challenge. While SAOD meth-
ods are validated on randomly down-sampled benchmark
datasets, our setting distinguishes itself in prioritizing the
annotation of challenging targets while requiring remedies
for the easier ones. Without specific handling, the perfor-
mance of detection would be severely interfered. But mean-
time we can benefit from the prior knowledge of the unla-
beled targets: pseudo-labeling that accepts confident model
predictions can exactly supplement easier targets with self-
supervision.

Mixed types of supervision for object detection. Be-
sides the box-level supervision we focus on in this paper,
some recent work also includes additional image-level la-
bels [3, 6, 31] and more types of supervision (e.g. scrib-



Methods 0 1 2 3 4 5 6 7

COCO-sup

Random 22.50±0.10 25.97±0.15 27.37±0.21 28.23±0.15 29.17±0.21 29.87±0.06 30.53±0.15 31.10±0.10
MeanEntropy 22.50±0.10 26.80±0.20 27.93±0.23 28.80±0.26 29.70±0.30 30.37±0.15 30.93±0.15 31.37±0.06

WhiteBoxQBC 22.50±0.10 26.00±0.20 27.43±0.23 28.30±0.20 29.50±0.46 30.13±0.49 30.87±0.38 31.43±0.32
CoreSet 22.50±0.10 26.03±0.35 27.47±0.40 28.33±0.23 29.33±0.25 30.03±0.23 30.63±0.21 31.27±0.12

LearningLoss* 23.20±0.20 24.07±0.21 24.87±0.12 25.60±0.17 26.33±0.21 27.27±0.21 27.80±0.20 28.47±0.40
MIAOD* 19.10±0.36 22.37±1.18 23.80±0.98 24.83±0.83 25.43±0.81 26.43±0.38 27.00±0.56 27.47±0.60
ALMDN* 22.93±0.21 24.63±0.45 25.23±0.38 25.73±0.25 26.20±0.44 26.80±0.36 27.60±0.30 28.13±0.35

MeanEntropy-MCDropout* 23.13±0.06 27.20±0.20 28.27±0.06 29.23±0.12 29.97±0.21 30.80±0.10 31.50±0.20 31.90±0.10
MeanEntropy-Ensemble* 22.33±0.06 26.33±0.23 27.23±0.15 28.07±0.46 28.80±0.26 29.57±0.12 29.97±0.06 30.57±0.06

sCOMPAS (ours) 22.50±0.10 28.23±0.21 30.50±0.20 32.03±0.25 33.20±0.10 33.93±0.15 34.60±0.36 34.93±0.23

Table 6. MAP and standard deviation (%) under COCO-sup and COCO-semi settings, with 50K boxes for initialization and 20K boxes for
each active learning cycle. Results reported are averaged over 3 independent runs. The best result of each cycle is highlighted in bold.

bles in [18]) to facilitate the detection performance. For
example, [3, 6, 31] utilize weakly labeled datasets and a
proportion of fully labeled images. In comparison, our
box-only setting is simpler and more effective. Take the
VOC dataset for example, as presented in Tab. 4, sCOM-
PAS obtains 73.57% mAP50 with merely 8.5% (4K) boxes,
and then achieves 76.4% mAP50 with 10.6% (5K) boxes.
Given access to all unlabeled images, mCOMPAS reaches
79.97%-80.63% mAP50. It clearly surpasses the state-of-
the-art 69.4% mAP50 in [3, 6, 31], where all image-level
labels and 10% fully labeled images are required.

Mixed types of supervision can also be sampled via ac-
tive learning. Based on a pre-trained weakly supervised
detector, BiB [24] proposes to actively provide full box
annotations for images. BAOD [16] progressively adds
image-level supervision or full box annotations in each ac-
tive learning cycle. In contrast to their mixed types of su-
pervision and exhaustive annotation protocol, the proposed
pipeline is simple and effective in de-redundancy, and is su-
perior in detection performance.

I. Numerical Results
Last, we present the exact numerical results used to plot

Fig. 1 and Fig. 3 of the main paper and the results of Fig. 5 in
this supplementary file. Tab. 4 reports mAP50 and standard
deviation (%) under the VOC-sup and VOC-semi settings.
Tab. 5 presents results under COCO-sup and COCO-semi
settings with the 20K box-level annotation batch size, and
Tab. 6 presents the results with a larger batch size of 40K
boxes.
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[24] Huy V. Vo, Oriane Siméoni, Spyros Gidaris, Andrei Bursuc,
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