Appendix of Controllable Mesh Generation Through Sparse Latent Point Dif-
fusion Models.

Contents
IA. Method And Network Architectures| L 2
AL 1 Details of Shape as Point (SAP)| 2
. etails of the Feature Transfer odule|. 3
[A3 Network Architecturesl 3
[A.4 DDPM Hyperparameters| 4
[A- ampling Algorithm| 4
B. XPEIIMENTS| o o o 5
B __DatasetDetails] e e 5
[B.2 Traming Details|. 5
B. Normal Consistency Loss| 5
5
6
omplete Evaluation Results for Generated Point Clouds.| 7
IB.7 Point Clouds Generated by Our Method and Baselines.| 8
9
. 10
B.10 Ablation Study on the Sparse Latent Points| 12
BT Shape Tnterpolation and EXTApOTation . - . . « « « « o o oo e oo 13

A. Method And Network Architectures
A.1 Details of Shape as Point (SAP)

Skip Connections

=
E) (%] %] C o= ©
ot & 8 88 §8 F3 £z 3z f: 93 935 8 § Ou
Pont .3 .8 83 35 .85 .85 .55 85,335,535 ,8 ,35 , Point
Cod o |z B& B& B& B8 2% %% 2Z TF |z & Clu
H 3 B B B 8 G z a- 3~ = |&
Q
Number of
Poms | 2048 4096 4096 1024 256 64 16 64 256 1024 4096 4096 20480
Feature
Dmenson 3 4 32 64 128 256 512 256 256 128 128 30 6

Figure 1: The architecture of the upsampling network that we use in SAP.

In this work, we choose the learning-based method proposed in [6] to reconstruct meshes from point clouds, we
refer it as Shape as Points (SAP). SAP is composed of an upsampling network and a Differentiable Poisson Surface
Reconstruction (DPSR) algorithm. The upsampling network upsamples the point cloud and estimates normals of
every point in the upsampled point cloud. The DPSR algorithm solves a Poisson equation defined by the dense point
cloud with normals using the spectral method and obtains an indicator field discretized on a 3D grid. Then the mesh
is recovered by extracting the zero-isosurface of the 3D indicator grid. We refer readers to the original work [6] for
details of the DPSR algorithm.

For the upsampling network, we use the improved PointNet++ proposed in [S)]. The improved PointNet++ is able
to extract features for every point in a point cloud. The features contain both global information about the overall
3D shape and local details. To upsample the input point cloud by a factor of v, we can interpret the first part of the
extracted feature for each point as v spatial displacements. We can add the « displacements to the original position
of every input point to obtain v new points. We interpret the second part of the extracted feature as v normals. The
method to obtain normals of the upsampled point cloud depends on whether the input point cloud has normals. Remind
that our method is able to generate point clouds with normals, while baselines can only generate point clouds without
normals. If the input point cloud has normals, we add the predicted v normals for each point to the original normal
and obtain y refined normals for the upsampled points. If the input point cloud does not have normals, the predicted v
normals for each point are directly regarded as the normals of the upsampled points. In this way, we can upsample the
input point cloud by a factor of ~ and obtain normals for every upsampled point. We train two separate SAP models
to handle the two cases where the input point cloud has normals and no normals, and refer them as SAP-Normal and
SAP-No-Normal, respectively. When visualizing meshes reconstructed from point clouds generated by our method,
we use SAP-Normal, but when computing the quantitative metrics, 1-NN, COV, and MMD for the meshes, we use
SAP-No-Normal for both our method and baselines for a fair comparison.

We observe that most shapes in ShapeNet have symmetry about the xy plane. To encourage the reconstructed mesh
to be symmetric about the xy plane, we mirror the input point cloud about the zy plane and concatenate the mirrored
point cloud with the original point cloud, and then feed the concatenated point cloud to the upsampling network. To
handle the case where the generated shape is not symmetric about the zy plane, we assign a label of 1 to the original
points and a label of —1 to the mirrored points, so that the upsampling network can distinguish the original point cloud
and mirrored point cloud.

We assume the number of input points to the upsampling network is 2048. We first mirror the input point cloud and
obtain the concatenated point cloud that contains 4096 points. The upsampling network upsamples the 4096 points by
a factor of 7 = 5 and obtains a dense point cloud that contains 20480 points with normals. The detailed architecture
of the upsampling network is shown in Figure[I] We adopt the same training procedures as [6] to train the upsampling
network. We refer readers to [6] for details of the training algorithm. We train the network on all the 13 categories
of the ShapeNet dataset pre-processed by [6]. It is trained for 1000 epochs with a batchsize of 32 using the Adam
optimizer with a learning rate of 2 x 10~%. The checkpoint with the lowest loss is used to reconstruct meshes from

point clouds generated by our method and baselines.

We find that the inputs to the SAP module during training and testing have discrepancies: The inputs during
training are point clouds sampled from mesh surfaces, while the inputs during testing are point clouds generated by
our method or baselines, possibly with flaws and are not seen by the SAP module during training. We tackle this
problem by adding some Gaussian noises with a standard deviation of 0.02 to the input point clouds during training,
and add Gaussian noises of the same magnitude to input point clouds during testing, in the hope that the Gaussian
noises will submerge the flaws in the generated point clouds.

We conduct an ablation study on the effect of utilizing normals, symmetry, and adding Gaussian noises in Sec-
tion[B.9l

A.2 Details of the Feature Transfer (FT) Module

As mentioned in Section 3.1 in the main text, we use the Feature Transfer (FT) module in our autoencoder. The FT
module is originally proposed in [5]. We briefly repeat the design of the FT module. The FT module can map features
from one set of points to the second set of points. Assume the first set of points is X' = {a:jl ER31 <j <N}

with features F' = {f] € R?'|1 < j < N'}, and the second set of points is X2 = {a2 € R*1 < j < N}
with features F* = {f? ¢ R%|1 < j < N?2}. For each point x% in X?, we find its K-nearest neighbors in X,
Features at the neighbors are transformed through a shared Multi-layer Perceptron (MLP), then aggregated to the point
933 through the self-attention mechanism proposed in [5]. Note that the original feature ff at x? are used as queries in

the self-attention mechanism. We refer readers to [S]] for details of the self-attention mechanism. In this way, we can
map features F'* at X! to features at X 2.

A.3 Network Architectures

Architecture of the latent DDPMs. As mentioned in Section 3.2 in the main text, we train two DDPMs in the
latent space of our point cloud autoencoder. The first one learns the distribution of the sparse latent points, and its
architecture is shown in Figure[2} The second DDPM learns the distribution of the features at the sparse latent points,
and its architecture is shown in Figure 3]

Skip Connections

w w w g c %)
2l s B8 3z gz B
Input @ Sl = g = 9 8 Qo =
. — e ,-.—»3,.,—»33—»3 3—’Q—>Output
Points El= 2 = 3z 3 Z
S E& 5z =& Sa =
S a 3 Q@ @ 5
Num of
Points 16 16 16 16 16 16 16
Feature
Dimension 3 32 64 128 64 64 3

Figure 2: The architecture of the latent DDPM that learns the distribution of the sparse latent points.

Skip Connections

17 w %) c = on
s £33 ©8 ¥z ¥z =
Input @ 8 3 2 = 2 2 e @
) g —3 2—>3 2 —> 3 22— 3 23— a — Output
Points = Z 5 Z T Z =l =
< 23 =3 2 2 &
S a 3 Q @ 5
Num of
Points 16 16 16 16 16 16 16
Feature

Dimension 48 128 256 512 256 128 48

Figure 3: The architecture of the latent DDPM that learns the distribution of features at the sparse latent points.

A.4 DDPM Hyperparameters

In Section 2.1 in the main text, we define constants 5;,t = 1,2,...,T in the DDPM. In all our experiments, we use a
linear schedule for 5;’s. 81 is setto 1 x 104, B is setto 2 x 102, and T is set to 1000.

A.5 Sampling Algorithm

In Section 5.2 in the main text, we mention that we can sample features only for a portion of the sparse latent points,
while fixing the features of rest points, so that we can only change the shape of a part of an object and keep other parts
fixed. We describe the detailed sampling method in the following algorithm.

Algorithm 1 Sample new features for a part of sparse latent points.

Input: The second DDPM e,. Positions of the sparse latent points X & RN*3 features at every point F' € RN x4,
where N is the number of the sparse latent points and d is the dimension of the features. A mask m € RY that
contains 0 and 1, where 1 denotes points that we want to sample new features for and 0 denotes points that we keep
the original features.

Output: The sampled features FO € RV x4,

1: Sample f7 of shape (IV - d, 1) from standard Gaussian distribution
2: @ < reshape X to shape (IV - 3,1)
3: M <« repeat m for d times and concatenate them to a matrix of shape (N, d)
4 fort=T,T—1,...,1do

. fo = £t ViZaes(fhmit)
6

7

8

9

T Va Ve

F° « reshape f° to shape (N, d)

F'«— M ®F°+ (1 - M)® F, where ® is element-wise product.

FO « reshape F° to shape (N - d, 1)

Sample £~ from q(f*~! | ft’f-O) = N(ft 1 V1Bt fO + @(17&t—1)ft’ 1-a¢1 B,1)

71— 1—a¢ 1—a¢

10: end for
11: FO < reshape f° to shape (N, d)
12: return F°

B. Experiments
B.1 Dataset Details

‘We use ShapeNet [2] to train our mesh generative model and compare it with other baselines. We use the pre-processed
ShapeNet dataset provided by [6]. It contains 13 categories of objects: airplane, bench, cabinet, car, chair, display,
lamp, loudspeaker, rifle, sofa, table, telephone, and watercraft. It splits the dataset into a training set and a validation
set. For each shape, it provides 10000 points with normals sampled from the mesh surface, and the signed distance
field (SDF) of the shape discretized on a 1283 grid. Most shapes in it are normalized in a unit bounding box, namely,
the center of the object’s bounding box is placed at the origin, and the maximum length of the three sides of the
bounding box is scaled to 1 such that each shape ranges from —0.5 to 0.5. We scale the shapes in the dataset by a
factor of 2 to make them range from —1 to 1.

When evaluating point clouds generated by our method and baselines, or point clouds sampled from the recon-
structed meshes, we normalize each point cloud according to its bounding box using the same method described above
such that each point cloud ranges from —1 to 1.

B.2 Training Details

We first train autoencoders on 5 categories of ShapeNet: Airplane, cabinet, car, chair, and lamp. Each autoencoder is
trained for 6000 epochs, and we save a checkpoint every 100 epoch. The checkpoint with the lowest reconstruction
error is chosen for the next step latent DDPM training. The autoencoder is trained using the Adam optimizer with a
learning rate of 0.001 and batchsize is 32. The autoencoder’s reconstruction error (CD loss) on the validation set is
{0.81,3.94,2.15,2.86,1.71} x 103 for airplane, cabinet, car, chair, and lamp, respectively. Note that the shapes in
the dataset are scaled by a factor of 2 and therefore the CD loss is amplified as well.

After training the autoencoder, we fix its parameters and train two latent DDPMs in its latent space. The first
DDPM learns the distribution of the positions of the sparse latent points. It is trained for 10000 epochs using the
Adam optimizer with a learning rate of 0.0002 and batchsize is 32. We record the exponential moving average (EMA)
of the DDPM parameters along the training trajectory. An EMA rate of 0.9999 is used for airplane and car, and an
EMA rate of 0.999 is used for cabinet, chair, and lamp. The second DDPM learns the distribution of the features at
the sparse latent points. It is trained for 10000 epochs using the Adam optimizer with a learning rate of 0.0002 and
batchsize is 32. An EMA rate of 0.999 is used for all categories. For all baselines, we train them using their released
codebase and follow the default setting.

B.3 Normal Consistency Loss

For evaluation in Section 5.2 in the main text, we use the normal consistency loss between two point clouds X and Y':

Liormal = Z [1—|cos(ng,ny-)|] + Z [1—|cos(ng-,ny)ll,

rcX yey

where 1, n, denotes the normal of the points , y, and y* = argmin, .y ||z — y||, " = argmin,c x ||z — y||.
For training of the autoencoder described in Section 3.1 in the main text, we use a modified normal consistency

loss:
;ormal = Z ||’I’Lm *ny*‘|2 + Z ||’I’Lm* - '"'y”2

reX yey

B.4 Complete Evaluation Results for Generated Meshes.

In this section, we demonstrate the complete evaluation results for meshes generated by our method and baselines.
We train two variants of our method. They are different in how to choose the initial point in FPS when sampling the
sparse latent points. The first one chooses the centroid of the input point cloud as the initial point, while the second
one randomly chooses a point in the input point cloud as the initial point. The evaluation metrics we use are 1-NN,
MMD, and COV. These metrics may not accurately reflect the real quality of generated meshes. See qualitative results
in Figure |4 for visual comparison. We find that MMD with normal consistency loss best matches human perception,
possibly because MMD with normal consistency loss is more sensitive to the discrepancies of the surface curvatures
between the generated meshes and reference meshes.

Table 1: INN-Acc (Percentage) comparison of meshes generated by our method and baselines. “N.C.” denotes normal consistency
loss. “Centroid” denotes the FPS method in which we choose the centroid of the point cloud as the initial point, and “Random”
denotes the FPS method in which we randomly choose a point as the initial point.

Airplane Cabinet Car Chair Lamp
CD EMD N.C. CD EMD N.C. CD EMD N.C. CD EMD N.C. CD EMD N.C.
TreeGan [7] 81.31 71.78 84.65 | 69.75 7420 5573 | 91.32 7523 87.18 | 70.24 62.04 56.94 | 74.68 59.74 50.43
ShapeGF [1] 7339 7129 7636 | 6146 53.82 5637 | 67.29 59.01 5447 | 56.57 54.14 54.65 | 57.79 5130 54.33
PVD [8] 88.86 8391 86.14 | 60.82 6528 58.60 | 70.09 59.87 58.14 | 55.39 5236 55.10 | 58.44 56.06 76.19
DPM (4] 7550 68.81 50.37 | 6242 63.69 49.68 | 86.38 79.44 50.00 | 66.17 69.50 49.93 | 66.23 61.04 52.60
SPGAN (3] 82.05 7042 83.29 | 70.38 61.15 60.19 | 85.18 7523 59.61 | 79.03 75.85 77.99 | 67.97 64.07 70.13
Ours (Centroid) | 70.17 65.84 7240 | 55.73 59.24 5541 | 69.09 64.62 5340 | 56.72 51.18 53.77 | 58.44 58.87 52.81
Ours (Random) | 72.40 67.82 7252 | 53.50 56.69 54.78 | 70.09 63.68 53.34 | 56.57 53.10 5391 | 56.28 54.11 54.33

Table 2: MMD comparison of meshes generated by our method and baselines. CD, EMD, and normal consistency (N.C.) losses are
multiplied by 1000, 100, and 10, respectively. We find that the N.C. loss computed MMDs best match human evaluations based on
examples in Figure d]

Airplane Cabinet Car Chair Lamp
CD EMD NC. | CD EMD NC.|CD EMD NC.| CD EMD NC.| CD EMD N.C.
TreeGan [7] 501 404 379 | 1051 742 4.04 | 517 359 3941|1610 9.02 506 | 26.68 1228 6.31
ShapeGF [1] 433 403 326 | 975 649 298 | 446 310 340 | 1443 853 453 | 1999 11.04 543
PVD [8] 511 429 342 | 11.01 724 351 463 312 347 | 1589 838 431 | 2485 1280 5.01
DPM [4] 446 400 480 | 967 739 469 | 499 357 495 | 1409 951 620 | 19.63 12.02 6.84
SPGAN [3] 509 403 339 | 1052 7.18 3.04 | 502 349 354 | 18.86 9.67 4.68 | 23.64 12.63 4.87
Ours (Centroid) | 446 3.77 3.07 | 952 650 2.76 | 455 320 3.23 | 1476 849 419 | 23.61 11.87 438
Ours (Random) | 437 381 3.07 | 937 677 279 | 458 3.18 323 | 1487 8.63 418 | 2148 1137 4.32

Table 3: COV (Percentage) comparison of meshes generated by our method and baselines. “N.C.” denotes normal consistency loss.

Airplane Cabinet Car Chair Lamp
CD EMD N.C. CD EMD N.C. CD EMD N.C. CD EMD N.C. CD EMD N.C.
TreeGan [7] 4629 43.81 31.68 | 43.31 5096 29.94 | 3324 34.18 8.28 | 49.63 4889 26.29 | 47.19 46.75 29.87
ShapeGF [1] 49.50 41.58 41.34 | 4586 49.04 38.85 | 44.73 47.80 14.82 | 52.88 50.96 34.12 | 50.65 55.84 36.80
PVD [8] 3441 349 32.67 | 45.85 4841 30.57 | 40.05 4139 30.68 | 48.15 50.52 3220 | 51.08 5541 36.79
DPM (4] 4332 48.76 3218 | 49.68 5032 33.76 | 3324 35.11 721 | 44.02 4727 2644 | 4848 5238 29.44
SPGAN (3] 41.09 46.29 34.65 | 3949 42.68 3248 | 3258 36.72 12.68 | 30.13 3191 21.86 | 46.75 49.78 34.63
Ours (Centroid) | 48.51 4629 39.85 | 52.87 47.77 37.58 | 38.99 39.92 12.55 | 49.19 49.63 3471 | 52.81 5238 36.36
Ours (Random) | 48.76 47.03 37.87 | 50.96 50.96 40.76 | 43.12 41.26 13.89 | 48.89 5037 34.86 | 51.08 52.81 33.77

B.5 Meshes Generated by Our Method and Baselines.

it PYP P
et QPP

v A 1 \T /\ £ ”S
VPO IGY]

Figure 4: Compare meshes generated by our method and baselines. We can see that meshes generated by our method have smoother
surfaces and sharper local details.

|

7 Il 2
3 “é: o | Y
o

B.6 Complete Evaluation Results for Generated Point Clouds.

In this section, we demonstrate the complete evaluation results for point clouds generated by our method and baselines.
We train two variants of our method. They are different in choosing the initial point in FPS when sampling the sparse
latent points. The first one chooses the centroid of the input point cloud as the initial point, while the second one
randomly chooses a point in the input point cloud as the initial point. The metrics we use are 1-NN, MMD, and COV.
These metrics may not accurately reflect the real quality of generated point clouds. See qualitative results in Figure 3]
for visual comparison.

Table 4: 1NN-Acc (Percentage) comparison of point clouds generated by our method and baselines. “Centroid” denotes the FPS
method in which we choose the centroid of the point cloud as the initial point, and “Random” denotes the FPS method in which we
randomly choose a point as the initial point.

Airplane Cabinet Car Chair Lamp
COD EMD| COD EMD | CD EMD | CD EMD | CD EMD
TreeGan [[7] 79.95 99.26 | 71.66 99.68 | 91.12 97.40 | 73.86 94.83 | 69.70 93.72
ShapeGF (1] 64.23 7401 | 59.87 62.74 | 63.08 64.49 | 54.65 69.35 | 56.06 56.49
PVD [8] 85.52 81.06 | 61.46 60.82 | 64.28 53.81 | 55.68 53.24 | 56.92 56.06
DPM 7748 6547 | 6847 6529 | 82.18 6943 | 63.15 61.30 | 66.67 64.29
SPGAN [3] 79.70 80.69 | 70.38 86.31 | 81.51 83.58 | 79.69 83.01 | 69.26 69.48
Ours (Centroid) | 62.50 70.79 | 54.78 63.69 | 58.21 63.28 | 55.17 52.66 | 53.68 55.19
Ours (Random) | 64.36 75.74 | 51.27 58.28 | 58.28 64.22 | 57.02 58.12 | 53.25 56.49

Table 5: MMD comparison of point clouds generated by our method and baselines. CD and EMD losses are multiplied by 1000
and 100, respectively.

Airplane Cabinet Car Chair Lamp
CD EMD| CD EMD | CD EMD | CD EMD | CD EMD
TreeGan [[7] 424 954 | 974 23.10 | 486 4.74 | 1528 12.83 | 21.06 19.75
ShapeGF 1] 396 403 | 935 6.84 | 428 320 | 13.83 939 | 17.92 10.83
PVD 450 393 | 11.07 758 | 453 3.05 | 1468 829 | 20.60 1147
DPM [4] 385 384 | 923 722 | 467 322 | 1244 880 | 1713 12.07
SPGAN [3] 494 415 | 1032 849 | 482 3.64 | 18.60 10.03 | 21.97 13.24
Ours (Centroid) | 4.17 3.84 | 872 647 | 405 3.11 | 1400 826 | 21.99 11.79
Ours (Random) | 405 409 | 857 646 | 407 299 | 1401 8.40 | 2034 11.15

Table 6: COV (Percentage) comparison of point clouds generated by our method and baselines.

Airplane Cabinet Car Chair Lamp
CD EMD| COD EMD | CD EMD | CD EMD | CD EMD
TreeGan [7] 4728 1584 | 4395 12.74 | 37.52 23.23 | 48.01 2290 | 48.05 2597
ShapeGF 52.23 4035 | 49.04 52.87 | 4539 4393 | 51.85 41.36 | 52.38 55.84
PVD [8] 35.15 40.59 | 52.86 47.77 | 4325 47.53 | 47.41 51.40 | 5238 51.51
DPM [4] 41.83 49.01 | 52.23 48.41 | 28.57 42.06 | 46.82 48.89 | 49.78 51.52
SPGAN [3] 3936 33.66 | 42.68 36.94 | 32.18 37.25 | 28.95 25.55 | 46.75 48.05
Ours (Centroid) | 48.76 42.08 | 52.87 47.13 | 40.19 40.05 | 49.93 49.93 | 53.68 52.38
Ours (Random) | 49.50 37.62 | 54.78 49.68 | 46.19 41.66 | 49.19 50.52 | 50.65 53.68

B.7 Point Clouds Generated by Our Method and Baselines.

TreeGAN

DPM

PVD

ShapeGF

SPGAN

Ours

Figure 5: Compare point clouds generated by our method and baselines. We can see that point clouds generated by our method
distribute more uniformly on the surface of the objects, and have sharper local details.

B.8 More examples generated by our method.

In this section, we show more shapes generated by our methods in Figure[] We also train our method on two additional
categories: Rifle and vessel.

Airplane

Car

Lamp

Rifle

Chair

Vessel

Cabinet

Figure 6: More point clouds and meshes generated by our method.

B.9 Ablation Study on the SAP Module.

As mentioned in Section for the SAP module, we can choose whether to utilize symmetry of the 3D shapes, and
normals of the input point clouds, and whether to add Gaussian noises to the input point clouds during training and
testing. In this section, we conduct an ablation study on the 3 techniques in the SAP module. Specifically, we use our
method to generate point clouds on the five categories of ShapeNet (airplane, cabinet, car, chair, and lamp), and use
SAP modules with different settings to reconstruct meshes from the generated point clouds. Then we compute metrics
(1-NN, MMD, and COV) for meshes reconstructed by different SAP settings and compare their performance. Results
are shown in Table[7] Table[8]and Table 9]

We can see that utilizing symmetry brings improvements to these metrics in most cases, while normals do not have
an obvious impact, and Gaussian noises usually lead to a drop in these metrics. These metrics may not correlate well
with human perceptions. Therefore, we also conduct a visual comparison of different SAP settings in Figure[/] We
can see that utilizing symmetry can improve the symmetry of reconstructed meshes in many cases, utilizing normals
can reconstruct meshes with smoother surfaces, and adding noises can help obtain smoother surfaces and fix flaws in
the input point cloud.

Considering the quantitative and qualitative comparisons of different SAP settings, we use SAP with symmetry
when computing quantitative metrics such as 1-NN, MMD, and COV for our method and baselines, and use SAP with
symmetry, normal, and noise when visualizing reconstructed meshes.

Table 7: INN-Acc (Percentage) comparison of meshes reconstructed with different SAP settings. “N.C.” denotes normal consis-
tency loss.

Airplane Cabinet Car Chair Lamp
CD EMD N.C. CD EMD N.C CD EMD N.C. CD EMD N.C. CD EMD N.C
Symmetry, Normal, Noise | 75.37 69.06 75.87 | 59.87 58.60 56.05 | 73.36 71.50 52.20 | 57.68 54.06 52.66 | 59.09 57.79 54.11

Symmetry, Normal 7129 6498 73.02 | 5732 60.83 56.37 | 7023 65.69 5294 | 57.02 5236 52.73 | 57.58 56.06 54.11
Symmetry 69.80 6584 72.15 | 56.69 56.37 5573 | 68.76 63.15 53.47 | 56.20 51.18 54.14 | 58.66 56.49 53.46
Vannila 71.41 6522 73.51 | 57.96 56.69 54.78 | 69.69 65.02 5381 | 56.72 52.88 53.18 | 59.31 54.98 52.81

Table 8: MMD comparison of meshes reconstructed with different SAP settings. CD, EMD, and normal consistency (N.C.) losses
are multiplied by 1000, 100, and 10, respectively.

Airplane Cabinet Car Chair Lamp
CD EMD NC.|CD EMD NC. | CD EMD NC. | COD EMD NC.| CD EMD N.C.
Symmetry, Normal, Noise | 456 3.82 3.15 | 9.69 6.62 271 | 460 333 3.15 | 1491 849 4.14 | 2460 1201 4.32
Symmetry, Normal 447 370 3.08 | 953 673 274 | 457 324 321 | 1487 852 417 | 23.86 11.74 433
Symmetry 445 372 3.09 | 948 656 274 | 455 317 324 | 1474 843 420 | 23.56 11.76 4.38
Vannila 448 376 3.1 | 945 648 275 | 457 3.18 324 | 1477 843 419 | 2365 1193 439

Table 9: COV (Percentage) comparison of meshes reconstructed with different SAP settings. “N.C.” denotes normal consistency
loss.

Airplane Cabinet Car Chair Lamp
CD EMD N.C. CD EMD N.C. CD EMD N.C. CD EMD N.C. CD EMD N.C
Symmetry, Normal, Noise | 45.30 43.56 37.87 | 52.87 49.04 39.49 | 39.52 37.38 12.28 | 48.01 51.85 34.86 | 50.65 51.95 35.06

Symmetry, Normal 49.01 4455 37.13 | 51.59 4586 3885 | 39.52 40.99 1255 | 49.04 5244 36.19 | 52.81 5195 3593
Symmetry 50.00 4554 38.86 | 5223 50.96 3822 | 39.65 3885 12.95 | 49.34 5421 3530 | 54.11 5325 36.36
Vannila 49.50 47.52 37.87 | 5223 5032 39.49 | 3939 4045 1228 | 48.89 5273 3442 | 52.81 54.11 36.36

10

SAP with SAP with SAP with Symmetry,

Point Cloud Vanilla SAP Symmetry Symmetry, Normal Normal, Noise

Figure 7: Qualitative comparisons of different SAP settings. The left column is point clouds generated by our method, and the right
4 columns are meshes reconstructed by SAP under different settings.

11

B.10 Ablation Study on the Sparse Latent Points

In this section, we conduct an ablation study on the number of sparse latent points (8,16,32) and the method to obtain
them. The first method is to use FPS to obtain the sparse latent points from the input point cloud, and the initial point
is chosen randomly. The second is to randomly sample points from the input point cloud as the sparse latent points.
We train our autoencoders and latent DDPMs under different settings on three categories: Airplane, car, and chair. We
report the autoencoder’s reconstruction error and the latent DDPMs’ average generation time of a single point cloud
in Table[T0] We also report 1-NN, MMD, and COV for point clouds and meshes generated under different settings in
Table[T1] Table[T2] and Table[T3] respectively.

We can see that increasing the number of latent points reduces the reconstruction error, but slows down the gen-
eration speed of our model. As for the generation quality reflected by the quantitative metrics in Table [T1] Table 2]
and Table [T3] we find that the number of sparse latent points and the method to obtain them do not have a clear or
significant impact. We therefore further add a visual comparison of these settings in Figure [§] We can see that these
settings indeed generate point clouds and meshes of similar quality. The number of sparse latent points mainly affects
the ability to perform controllable generation of our method. When we have too few sparse latent points, it restricts the
complexity of the controls we can perform on an object. When we have too many sparse latent points, we can perform
more delicate controls of the generated shapes, but it also becomes more complex and less intuitive to manipulate the
sparse latent points since we need to consider their relative positions and ensure that they form a plausible skeleton
of an object. Therefore, we choose to use 16 sparse latent points in our main experiments because it strikes a balance
between the complexity of the controls we can perform and ease of use. As for the method to obtain the sparse latent
points, although randomly choosing the latent points can generate point clouds and meshes of similar quality to those
generated by using FPS to obtain the latent points, Figure [§] shows that latent points obtained by random sampling
usually can not uniformly stretch over the surface of an object, while latent points obtained by FPS usually locate at
semantically meaningful regions of an object and thus is more intuitive for controllable generation.

Table 10: Ablation study on the number of latent points (8,16,32) and the method to sample them (FPS or random sampling). We
report the reconstruction error (CD x10~2) of the autoencoder and the average generation time (seconds) per sample.

Number of Sampling Airplane Car Lamp
Latent Points Method Error Time | Error Time | Error Time
8 FPS(Random) | 0.94 0.137 | 222 0.194 | 2.18 0.141
16 FPS(Random) | 0.81 0.197 | 2.15 0.242 | 1.70 0.196
32 FPS(Random) | 0.74 0.414 | 2.10 0450 | 1.47 0414
16 Random 0.86 0.197 | 2.12 0.235 | 1.75 0.204

Table 11: Ablation study on the number of latent points (8,16,32) and the method to sample them (FPS or random sampling). We
report INN-Acc (Percentage) of meshes and point clouds generated by our method under different settings. “N.C.” denotes normal
consistency loss.

Data Number of Sampling Airplane Car Lamp
Format | Latent Points Method CD EMD N.C. CD EMD N.C. CD EMD N.C
8 FPS(Random) | 71.91 63.74 72.03 | 68.62 67.42 53.00 | 64.72 55.63 58.01
Mesh 16 FPS(Random) | 70.17 67.08 71.66 | 70.09 63.68 53.34 | 56.93 5390 53.25
32 FPS(Random) | 72.28 62.13 73.51 | 71.76 66.15 53.40 | 62.99 5498 56.06
16 Random 71.04 64.85 7351 | 68.76 6429 53.00 | 60.61 52.81 56.49
8 FPS(Random) | 61.14 63.37 - 5721 67.49 - 56.06 58.23 -
Point 16 FPS(Random) | 64.36 75.74 - 58.28 64.22 - 53.25 56.49 -
Cloud 32 FPS(Random) | 68.07 66.96 - 60.08 66.15 - 5476 53.25 -
16 Random 57.30 65.72 - 56.74 65.89 - 5433 52.60 -

12

Table 12: Ablation study on the number of latent points (8,16,32) and the method to sample them (FPS or random sampling). We
report MMD of meshes and point clouds generated by our method under different settings. CD, EMD, and normal consistency
(N.C.) losses are multiplied by 1000, 100, and 10, respectively.

Data Number of Sampling Airplane Car Lamp
Format | Latent Points Method CD EMD NC. | CD EMD N.C.| CD EMD N.C
8 FPS(Random) | 446 376 3.02 | 450 323 321 | 2248 11.29 434
Mesh 16 FPS(Random) | 441 390 3.06 | 458 3.18 323 | 2259 1131 431
32 FPS(Random) | 450 3.75 3.14 | 464 3.14 325 | 23.07 1149 444
16 Random 449 376 3.08 | 452 319 321 | 23.63 11.68 4.37
8 FPS(Random) | 4.14 3.63 - 395 3.13 - 21.55 1124 -
Point 16 FPS(Random) | 4.05 4.09 - 4.07 299 - 20.34 11.15 -
Cloud 32 FPS(Random) | 430 3.80 - 415 3.14 - 21.70 11.55 -
16 Random 4.01 3.70 - 404 3.08 - 19.61 11.16 -

Table 13: Ablation study on the number of latent points (8,16,32) and the method to sample them (FPS or random sampling). We
report COV (Percentage) of meshes and point clouds generated by our method under different settings. “N.C.” denotes normal
consistency loss.

Data Number of Sampling Airplane Car Lamp
Format | Latent Points Method CD EMD N.C CD EMD N.C CD EMD N.C
8 FPS(Random) | 45.05 4431 39.85 | 42.19 4192 1535 | 49.35 51.08 35.06
Mesh 16 FPS(Random) | 45.54 42.08 37.62 | 43.12 41.26 13.89 | 50.22 59.74 38.53
32 FPS(Random) | 47.03 44.80 40.10 | 43.12 43.12 12.28 | 52.38 5541 34.63
16 Random 47.52 47.03 39.60 | 43.26 42.06 13.08 | 48.48 53.25 38.96
8 FPS(Random) | 46.53 46.53 - 43.66 40.05 - 51.52 56.28 -
Point 16 FPS(Random) | 49.50 37.62 - 46.19 41.66 - 50.65 53.68 -
Cloud 32 FPS(Random) | 49.26 42.82 - 45.13 43.12 - 53.25 55.41 -
16 Random 50.74 45.05 - 43.79 41.39 - 54.11 53.25 -

B.11 Shape Interpolation and Extrapolation

As mentioned in Section 5.3 in the main text, we can perform interpolation between two objects in the latent space of
our autoencoder. To achieve this, we can interpolate both the positions and features between the corresponding latent
points. The key is to establish the correspondence between the two sets of sparse latent points of the two objects. For
the two lamps shown in Figure 7 in the main text, one lamp is obtained by moving the positions of the latent points of
the other lamp. The correspondence between their latent points is clear. However, for two generally unrelated objects,
it is non-trivial to find the correspondence between their latent points, because the two sets of sparse latent points are
sampled independently by farthest point sampling (FPS) from the two objects.

To tackle this issue, we propose to first sample sparse latent points X, for the first object X!, where both
X, and X1 are set of points. If the object is in the form of a mesh, X! can be obtained by sampling points from
the surface of it. For the second object X 2, we do not directly sample its sparse latent points X, from X2, instead,
its latent points are obtained by finding the closest neighbor in X2 for each point in X.,,. In this way, we can obtain
X2 @nd the correspondence with X! . is established. Although X2 obtained in this way may not be perfect
in the sense that X2, has a different distribution from points directly sampled from X ? using FPS, we find that
our autoencoder can still well reconstruct X2 by encoding X ? to features at X2,,. The first reason is that X2,
obtained in this way still generally stretches over the whole surface of X 2. The second reason is that our autoencoder
is robust to the positions of the sparse latent points. As mentioned in Section 3.1 in the main text, we add noises to the
positions of the sparse latent points during the training of the autoencoder.

We provide several examples of shape interpolation between two unrelated objects in Figure[9] Beyond interpola-

tion, it is also possible to perform extrapolation as shown in Figure 9]

Decompose feature and position. Our sparse latent point representation has great flexibility to perform interpola-
tion. As shown in Figure 9 in the main text, we can perform both global and local interpolation. We will show that
we can also decompose the features and the positions of the sparse latent points during interpolation, namely, we can

13

o
o—~

8 Latent Points
FPS (Random)

———

16 Latent Points
FPS (Random)

32 Latent Points
FPS (Random)

16 Latent Points
Random

Figure 8: Ablation study on the number of latent points (8,16,32) and the method to sample them (FPS or random sampling). We
show meshes and point clouds generated by our method under different settings.

only interpolate the features or the positions of the corresponding latent points during interpolation. We provide an
example in Figure[T0] We can see that the features of the latent points control the local geometry of the shape, while
the positions of the latent points control the overall size of the shape.

. Source . Target .
Extrapolation Shape Interpolation Shape Extrapolation

Figure 9: Interpolation and extrapolation between two unrelated objects. Note that some sparse latent points are within the mesh
and are thus invisible.

Source Shape Target Shape

Interpolate both
Positions and
Features

Only Interpolate
Features

Only Interpolate
Positions

Weight 0.5 0.75 1

Figure 10: Our method can decompose the features and the positions of the sparse latent points during interpolation. In the first
row, we interpolate both the positions and features of the sparse latent points. In the second row, we only interpolate features. In
the third row, we only interpolate positions. Note that some sparse latent points are within the mesh and are thus invisible.

References

[1] R. Cai, G. Yang, H. Averbuch-Elor, Z. Hao, S. Belongie, N. Snavely, and B. Hariharan. Learning gradient fields
for shape generation. In European Conference on Computer Vision, pages 364-381. Springer, 2020.

[2] A. X. Chang, T. Funkhouser, L. Guibas, P. Hanrahan, Q. Huang, Z. Li, S. Savarese, M. Savva, S. Song, H. Su,

15

(3]

[4]

et al. Shapenet: An information-rich 3d model repository. arXiv preprint arXiv:1512.03012, 2015.

R. Li, X. Li, K.-H. Hui, and C.-W. Fu. Sp-gan: Sphere-guided 3d shape generation and manipulation. ACM
Transactions on Graphics (TOG), 40(4):1-12, 2021.

S. Luo and W. Hu. Diffusion probabilistic models for 3d point cloud generation. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 2837-2845, 2021.

Z.Lyu, Z. Kong, X. Xu, L. Pan, and D. Lin. A conditional point diffusion-refinement paradigm for 3d point cloud
completion. arXiv preprint arXiv:2112.03530, 2021.

S. Peng, C. Jiang, Y. Liao, M. Niemeyer, M. Pollefeys, and A. Geiger. Shape as points: A differentiable poisson
solver. Advances in Neural Information Processing Systems, 34:13032-13044, 2021.

D. W. Shu, S. W. Park, and J. Kwon. 3d point cloud generative adversarial network based on tree structured graph
convolutions. In Proceedings of the IEEE/CVF international conference on computer vision, pages 3859—-3868,
2019.

L. Zhou, Y. Du, and J. Wu. 3d shape generation and completion through point-voxel diffusion. In Proceedings of
the IEEE/CVF International Conference on Computer Vision, pages 5826-5835, 2021.

16

	Method And Network Architectures
	Details of Shape as Point (SAP)
	Details of the Feature Transfer (FT) Module
	Network Architectures
	DDPM Hyperparameters
	Sampling Algorithm

	Experiments
	Dataset Details
	Training Details
	Normal Consistency Loss
	Complete Evaluation Results for Generated Meshes.
	Meshes Generated by Our Method and Baselines.
	Complete Evaluation Results for Generated Point Clouds.
	Point Clouds Generated by Our Method and Baselines.
	More examples generated by our method.
	Ablation Study on the SAP Module.
	Ablation Study on the Sparse Latent Points
	Shape Interpolation and Extrapolation

