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We elaborate on the post-processing implementation of
the virtual markers and provide additional experimental de-
tails and results. At last, we discuss data from human sub-
jects and the potential societal impact.

1. Post-processing on Virtual Markers

As described in Section 3.1, considering the left-right
symmetric human body structure, we slightly adjust the
learned virtual markers Z to be symmetric. In fact, after the
first step that updates each zi by its nearest vertex to get
Z̃ ∈ R3×K . Z̃ are almost symmetric with few exceptions.
To get the final symmetric virtual markers Z̃sym ∈ R3×K ,
for each virtual marker located in the left body part, we take
its symmetric vertex in the right body to be its symmetric
counterpart.

Since the human mesh (i.e. SMPL [17]) itself is not
strictly symmetric, we clarify the symmetric vertex pair
(e.g. left elbow and right elbow) on a human mesh tem-
plate Xt ∈ R3×M in Figure 1. We place Xt at the
origin of the 3D coordinate system. Formally, we de-
fine the cost of matching ith vertex to jth vertex to be
Ci,j = |xi + xj |+ |yi − yj |+ |zi − zj |. A symmetric ver-
tex pair (Xt

i,X
t
j) is defined to have the minimal cost Ci,j .

In this way, for each virtual marker in the left body, we take
its symmetric vertex counterpart to be its symmetric virtual
marker and finally get Z̃sym.

2. Experiments

In this section, we first add detailed descriptions for
datasets and then provide more experimental results of our
approach.
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Figure 1. Illustration of the human mesh template Xt at the 3D
coordinate system and a symmetric vertex pair (Xt

i,X
t
j).

2.1. Datasets

H3.6M [4]. Following previous works [6, 10, 11, 22], we
use the SMPL parameters generated from MoSh [16], which
are fitted to the 3D physical marker locations, to get the GT
3D mesh supervision. Following standard practice [6], we
evaluate the quality of 3D pose of 14 joints derived from the
estimated mesh, i.e. M̂J . We report Mean Per Joint Position
Error (MPJPE) and PA-MPJPE in millimeters (mm). The
latter uses Procrustes algorithm [3] to align the estimates
to GT poses before computing MPJPE. To evaluate mesh
estimation results, we also report Mean Per Vertex Error
(MPVE) which can be interpreted as MPJPE computed over
the whole mesh.

3DPW [25]. The 3D GT SMPL parameters are obtained
by using the data from IMUs when collected. Following the
previous works [9, 13, 14, 26], we use the train set of 3DPW
to learn the model and evaluate on the test set.

MPI-INF-3DHP [19] is a 3D pose dataset with 3D GT
pose annotations. Since this dataset does not provide 3D
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mesh annotations, following [6, 10], we only enforce super-
vision on the 3D skeletons (Eq. (9)) in mesh losses.

UP-3D [12] is a wild 2D pose dataset with natural images.
The 3D poses and meshes are obtained by SMPLify [1]. Due
to the lack of GT 3D poses, the fitted meshes are not accurate.
Therefore we only use the 2D annotations to train the 3D
virtual marker estimation network as in [23].

COCO [15] is a large wild 2D pose dataset with natural
images. Previous work [20] used SMPLify-X [21] to obtain
pseudo SMPL mesh annotations but they are not accurate.
However, we find that if we project the 3D mesh to 2D image,
the resulting 2D mesh vertices align well with the image. So
we leverage the 2D annotations to train the virtual marker
estimation network as in [23].

SURREAL [24] is a large-scale synthetic dataset contain-
ing 6 million frames of synthetic humans. The images are
photo-realistic renderings of people under large variations in
shape, texture, viewpoint, and body pose. To ensure realism,
the synthetic bodies are created using the SMPL body model,
whose parameters are fit by the MoSh [16] given raw 3D
physical marker data. All the images have a resolution of
320× 240. We use the same training split to train the model
and evaluate the test split following [2].

2.2. Implementation Details and Computation Re-
source

Following common practice [2, 6, 8, 11, 13, 14, 20, 26],
we conduct mix-training by using the above 2D and 3D
datasets for experiments on the H3.6M and 3DPW datasets.
To leverage the 3D pose estimation dataset, i.e. MPI-INF-
3DHP [19], we extend the 64 virtual markers with the 17
landmark joints (i.e. skeleton) from the MPI-INF-3DHP
dataset. For experiments on the SURREAL dataset, we use
its training set alone as in [2,18]. We implement the proposed
method with PyTorch. All the experiments are conducted on
a Linux machine with 4 NVIDIA 16GB V100 GPUs. The
whole network is trained for 40 epochs with batch size 32
using Adam [7] optimizer.

We evaluate the model complexity in terms of FLOPs
(G) and the number of model parameters in Table 1. Com-
pared to the most recent state-of-the-art methods that di-
rectly regress all mesh vertices, such as I2L-MeshNet [20],
METRO [13], and Mesh Graphormer [14], our approach
with virtual marker representation reduces the computation
overhead by a large margin while getting better estimation
quality. The last column shows the MPVE errors on 3DPW
test set for performance reference.

Methods FLOPs (G) ↓ Params (M) MPVE↓
I2L-MeshNet [20] ECCV’20 28.7 141.2 110.1
METRO [13] CVPR’21 153.0 397.5 88.2
Mesh Graphormer [14] ICCV’21 48.8 180.6 87.7
Ours 22.1 109.6 77.9

Table 1. Computation overhead comparison with the recent state-of-
the-art methods that directly regress all 3D vertices. The rightmost
column shows the MPVE errors on the 3DPW test set for perfor-
mance reference.

Ours w/o Lconf w/o Lpose w/o Lnormal w/o Ledge

MPVE↓ 58.0 59.2 58.3 60.6 60.4

Table 2. MPVE errors on H3.6M [4] test set when ablating different
loss terms.

Occ. VM Parts MPVE↓ MPJPE↓ PA-MPJPE↓

None (Ours) 77.9 67.5 41.3
2 Arms 79.2 ↑ 1.3 68.2 ↑ 0.7 42.2 ↑ 0.9

2 Legs 78.3 ↑ 0.4 67.9 ↑ 0.4 41.7 ↑ 0.4

Body 78.6 ↑ 0.7 68.0 ↑ 0.5 41.8 ↑ 0.5

Random 78.7 ↑ 0.8 68.1 ↑ 0.6 41.9 ↑ 0.6

Table 3. Results on 3DPW [25] test set when different parts of
virtual markers (VM) are occluded.

2.3. Additional Quantitative Results

Different loss terms. Table 2 reports the MPVE error on
H3.6M [4] test set when ablating different loss terms. The
confidence loss [5] is used to encourage the interpretability of
the heatmaps to have a maxima response at the GT position.
Without the confidence loss, the error increases slightly. If
ablating the surface losses, MPVE increases a lot, which
demonstrates the smoothing effect of these two terms.

Robustness to occlusion. We report results when different
virtual markers are occluded by a synthetic mask in Table 3.
The errors are slightly larger than the original image (None),
which validates the effectiveness of the locality of the virtual
marker representation. Occluding arm regions results in a
larger error increase. This may be because the arm has larger
variations in the dataset.

Comparison to fitting. In order to disentangle the ability
of mesh regression from markers using Â with the ability
to detect the virtual markers accurately from images, we
first compute the estimation errors of the virtual markers.
The MPJPE over all the virtual markers is 35.5mm, which
demonstrates that these virtual markers can be accurately
detected from the images. We then fit the mesh model pa-
rameters to these virtual markers. Table 4 shows the metrics
of the fitted mesh on the SURREAL [24] test set. As we can



Figure 2. Meshes estimated by our approach on Internet images with challenging cases (complex poses or extreme body shapes).

Method MPVE↓ MPJPE↓ PA-MPJPE↓

Fitting 44.6 34.8 29.5
Ours 44.7 36.9 28.9

Table 4. Results on SURREAL [24] test set when the mesh is
obtained by fitting to the estimated virtual markers.

see, the fitted mesh has a similar error as our regression ones
which uses the interpolation matrix Â, which validates the
accuracy of the estimated virtual markers.

2.4. Additional Qualitative Results

Figure 4 shows more qualitative comparisons with
Pose2Mesh [2] on the SURREAL test set in which has
diverse body shapes. The skeleton representation used in
Pose2Mesh loses the body shape information so the method
[2] can only recover mean shapes. For example, in Fig-
ure 4 (d) (e), the estimated meshes of Pose2Mesh tend to
have the average body shape and fail to estimate the real
body shape, regardless of whether the person is slim or stout.
This is caused by the limited skeleton representation bottle-
neck so that the model learns a mean shape for the whole
training dataset implicitly. In contrast, our approach with
virtual marker representation generates more accurate mesh
estimation results.

Figure 5 shows more qualitative comparisons with
Pose2Mesh [2] and METRO [13] on the 3DPW test set.
Pose2Mesh and METRO use the skeleton or all 3D vertices
as intermediate representations, respectively. The estimated
meshes are overlaid on the images according to the cam-
era parameters. Pose2Mesh [2] has difficulty in estimating
correct body pose and shapes when truncation occurs (a) or
in complex postures (c). The results of METRO [13] have

(a) (c)(b)

Figure 3. Typical failure cases. (a) The right arm has inaccurate
shape estimation due to the inaccurate virtual marker estimation
around the arm when occluded. (b) Our method treats the lower arm
of another person as its own due to occlusion. (c) Interpenetration
around the right hand.

many artifacts where the estimated mesh is not smooth, and
they also fail to align the image well. In contrast, our method
estimates more accurate human poses and shapes and has
smooth human mesh results. In addition, it is more robust to
truncation and occlusion and aligns the image better.

Figure 6 shows more quality results of our approach
on the 3DPW [25], H3.6M [4], MPI-INF-3DHP [19], and
COCO [15] datasets. Figure 2 shows more qualitative results
on Internet images with challenging cases, such as extreme
body shapes or complex poses. Our method generalizes well
on the natural scenes. Figure 3 shows typical failure cases,
including inaccurate shape estimation and interpenetration,
which are mainly caused by inaccurate 3D virtual marker
estimation when occlusion occurs. But as expected, the rest
body parts are barely affected due to the local and sparse
property of the virtual marker.

3. Human Subject Data
We use existing public datasets of human subjects in our

experiments following their official licensing requirements.
With proper usage, the proposed method could be beneficial
to society (e.g. elderly fall detection).
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Figure 4. Qualitative comparison between our method and Pose2Mesh [2] on SURREAL test set [24]. Our approach generates more accurate
mesh estimation results on images of diverse body shapes.
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Figure 5. Qualitative comparison between our method and Pose2Mesh [2], METRO [13] on 3DPW test set [25]. Our approach is more
robust to occlusion and truncation and generates more accurate mesh estimation results that align images well.



Figure 6. Meshes estimated by our approach on images from the 3DPW [25] dataset (row 1-4), H3.6M [4] dataset (row 5), MPI-INF-
3DHP [19] dataset (row 6), and COCO dataset (last 2 rows) [15].
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